Chemistry 1.8 AS 91167 Demonstrate understanding of oxidation-reduction

Practice paper 1

Success Criteria: complete each level before moving onto the next

- Write half equations (identify from question)
- \circ $\;$ Use oxidation numbers to identify oxidant (reduced) and reductant (oxidised) $\;$
- o Complete practical and observe reactant/product colour for each species
- \circ $\;$ Write full observation linked to species for the reaction
- \circ $\;$ Write balanced half equations then full equation for REDOX reaction

Sample Question When potassium dichromate solution is mixed with iron (ii) sulfate solution the orange solution changes to a green colour. Explain these observations.

 $Cr_2O_7^{2-} \rightarrow Cr^{3+}$ (The reactants are given but you will have to remember the products)

 $Fe^{2+} \rightarrow Fe^{3+}$

Orange dichromate ion, $Cr_2O_7^{2-}$ is reduced to green chromate ion, Cr^{3+} and the rust orange Fe^{2+} ion is oxidised to pale green Fe^{3+} ion, so over all, the colour is from an **orange solution to a green solution**

1. Mix potassium permanganate solution (acidified) with sodium sulphite solution. Record observations and link to species oxidised and reduced. Show Oxidation numbers

Reduced species: ______

Oxidised species: _____

Observation linked to species: _____

Balanced equations:

2. Mix hydrogen peroxide solution with potassium iodide solution. Record observations and link to species oxidised and reduced. Show Oxidation numbers