

Demonstrate understanding of the properties of selected organic compounds

WORKBOOK

Working to Excellence & NCEA Questions

CONTENTS

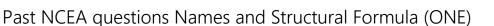
- 1. NCEA Questions for Names and Structural formula
- 2. Writing Excellence answers to Cis-Trans Isomers questions
- 3. NCEA Questions for Cis-Trans Isomers
- 4. Writing Excellence answers to Physical Properties questions
- 5. NCEA Questions for Physical Properties
- 6. Writing Excellence answers to Polymers questions
- 7. NCEA Questions for Polymers
- 8. Writing Excellence answers to Haloalkane Reactions questions
- 9. Writing Excellence answers to Alcohol Reactions questions
- 10. Writing Excellence answers to Alkene Reactions questions
- 11. NCEA Questions for Comparing Reactions
- 12. Writing Excellence answers to Major and Minor Products questions
- 13. NCEA Questions for Major and Minor Products
- 14. Writing Excellence answers to Acid-Base questions
- 15. NCEA Questions for Reaction Scheme
- 16. Writing Excellence answers to Identifying Unknowns questions
- 17. NCEA Questions for Identifying Unknowns
- 18. Answers for Excellence question worksheets
- 19. Reaction Scheme

All NCEA answers

can be found on

NCEA Chemistry 2.5

Organic Chemistry AS 91165


Summary Notes

C H O CI N

1. Functional groups – Naming and properties: Alkanes, alkenes, alkynes, haloalkanes (primary, secondary, tertiary), alcohol, amines, carboxylic acids

Alkenes Haloalkanes Alkanes 1. identify the longest C chain 1. Location of branch Halogen named as a branch 2. Name of branch Bromine – bromo 2. Identify any branches 3. Prefix of long chain Chlorine – chloro 3. Number the C atoms in longest 4. Location of C=C Fluorine – fluro chain so branches are on the lowest 5. -ene Iodine-iodo numbers 6. If in an alkene there are more 4. Location of branch than one double bond is present, it primary (1°) – bonded to a C that is 5. Name of branch bonded to only 1 other C named as a -diene or -triene. 6. Prefix of long chain secondary (2°) – bonded to a C that is 7. –ane bonded to 2 other C Non-polar - insoluble. tertiary (3°) – bonded to a C that is Non-polar - insoluble. BP and MP increase with chain bonded to 3 other C BP and MP increase with chain length length Polar with only slight solubility in small chained molecules Alcohols Carboxylic acids Amines 1. Location of branch 1. Identify the longest C chain Longest -- C chain with -COOH 1. 2. Name of branch 2. Identify any branches 2. Identify branches 3. Prefix of long chain 3. Number the C atoms in longest 3. No. 1 C is the C in -COOH chain so number Carbon 1 4. Location of branches 4. an-5. Location of OH (if multiple di, attached to amino group (NH₂) 5. Name branch tri, tetra) 4. Location /Name of branch 6. Prefix 6. –ol 5. Amino-7. -anoic acid 6. Prefix of long chain Polar – soluble in water 7. -ane Higher BP and MP than alkanes and alkenes Weak acid – turns blue litmus red Weak base – turns red litmus blue

2013: Question 1d: Complete the following table to show the structural formula and IUPAC (systematic) name for each compound.

Structural formula	IUPAC (systematic) name
	pentanoic acid
	3-methylbut-1-ene
CH ₃ CH ₂ CH ₂ NH ₂	
сн°снсн ⁵ он	
сн, снсн, сн, сн, сн, снсн, сн, сн, сн, сн,	

Question 1b: Identify two molecules from the table in (a) that are constitutional (structural) isomers of each other.

Justify your choice.

2013: Question: 1a: (i) The structures of some organic compounds containing chlorine are shown below. Write the letter of the molecule that is a secondary chloroalkane. (ii) Describe why you chose the molecule

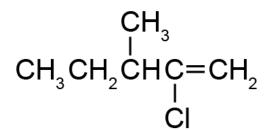
А		В
	CI HCH2CH3	CH ₃ CH ₂ CH ₂ CI
С		D
CH3	CH ₂ CHCCI ₂	CH ₃ CH ₂ CHCHCI
Е		F
CH3C	H ₂ CH ₂ CHCl ₂	CH ₃ CH ₂ CH ₂ CH ₂ CI

2014: Question: 1a: Draw a primary, a secondary, and a tertiary alcohol for the molecule $C_5H_{11}OH$.

Primary	
Secondary	
Tertiary	

2014: Question: 2a: Complete the following table to show the structural formula and IUPAC (systematic) name for each compound.

Structural formula	IUPAC (systematic) name
	But-1-yne
	2,2-dichloropentan-1-ol
$CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-NH_{2}$	
$\begin{array}{c} \mathrm{CH_3-CH_2-CH_2-CH-CH_2-C-OH} \\ \mathrm{I} \\ \mathrm{CH_3} \\ \mathrm{O} \end{array}$	
$\begin{array}{c} CH_{3}-CH-CH=C-CH_{2}-CH_{3}\\ \overset{ }{CI}\\ CI\\ \end{array}$	


Past NCEA questions Names and Structural Formula (TWO)

2015: Question: 1a: (ii) The organic compound, 4-chloro-3-methylpent-4-ene has been named incorrectly.

- Draw the implied structure and explain why it is named incorrectly.
- Give the correct IUPAC name for this structure

2015: Question: 1b: (i) Butan-1-ol has the molecular formula $C_4H_{10}O$. Its structural formula is: $CH_3 CH_2 CH_2 CH_2 OH$. Define the term constitutional (structural) isomer.

2015: Question: 1b: (ii) Draw THREE other constitutional (structural) isomers of $C_4H_{10}O$.

2015: Question: 1b: (ii) Draw THREE other constitutional (structural) isomers of $C_4H_{10}O$.

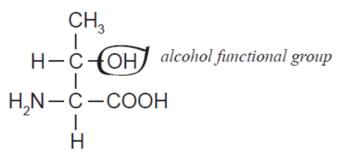
Structural formula	IUPAC (systematic) name
$CH_3-CH_2-CH_2-CH_2-CH-CH_3$	
	3-methylpentanoic acid
	but-1-yne
$H_3 - CH_2 - CH_2 - N$	

2016: Question: 1a: (ii) Draw and name the THREE constitutional (structural) isomers of the organic compound C_5H_{12} .

2016: Question: 1a: (i) Complete the following table.

Structural formula	IUPAC (systematic) name
$CH_3 - CH_2 - CH_2 - CH_2 - CH CH_3$	
	3-methylpentanoic acid
	but-1-yne
$CH_3-CH_2-CH_2-N$	

2016: Question: 1b: (i) Classify the following haloalkanes as primary, secondary or tertiary.


	· · ·	· · · · · · · · · · · · · · · · · · ·
	Haloalkane	Classification
А	CH_3 $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$ $CH_3 - CH_2 - CH_2 - CH_3$	
в	$\begin{array}{c} CH_{3}\\ CH_{3}-CH_{2$	
с	CH_3 $CH_3-CH_2-CH-CH-CH_2-CH_3$ CI	

Past NCEA questions Names and Structural Formula (THREE)

2017: Question: 2a: The structure of a molecule of an organic compound, threonine, is shown below.

threonine

An alcohol functional group has been identified in the threonine molecule above.

(i) Circle and name two other functional groups on the threonine molecule above.

(ii) Classify the alcohol functional group as primary, secondary, or tertiary.

(iii) Explain how you classified the alcohol group.

2017: Question: 2c: (i) Draw four alkene isomers for the organic compound C_4H_8 in a table below.

2017: Question: 2b: Name the organic compounds in the table below

Compound	IUPAC (systematic) name
$CH_3 - CH_2 - CH_2 - C \equiv CH$	
$\begin{array}{c} CH_3-CH-CH-CH_2-CH_2-CH_3\\ I & I\\ Br & CH_3 \end{array}$	
$\begin{array}{c} OH CH_{3} \\ I I I \\ CH_{3} - CH_{2} - CH - C - CH_{3} \\ I \\ CH_{3} \end{array}$	

2018: Question: 1a: Complete the following table.

_	

Compound	IUPAC (systematic name)
$CH_2 = CH - CH_2 - CH_2 - CH_3$	
СН ₃ -СН-СН-СН ₃ СН ₃ ОН	
	2-hydroxypropanoic acid

2018: Question: 1b: Draw structural formulae for primary, secondary, and tertiary chloroalkane molecules that are constitutional (structural) isomers with the molecular formula C₄H₉Cl.

GZ Science Resources

2019: Question: 1a: Complete the following table

Compound	IUPAC (systematic name)
H H O H-C-C-C H H H OH	
	propan-2-amine
$\begin{array}{cccccc} H & H & H & H & H \\ I & I & I & I & I \\ H - C = C - C - C - C - C - C I \\ I & I & I \\ H & H & H \end{array}$	
	2,3-dimethylbutane

2019: Question: 1b: Draw four structural (constitutional) isomers of $C_4H_{10}O$ that are alcohols. Classify the alcohols as either primary, secondary or tertiary.

1.	2.
Type of alcohol: 3.	Type of alcohol: 4.
Type of alcohol:	Type of alcohol:

2020: Question: 1a: Complete the following table

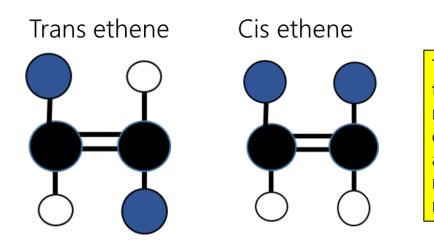
Compound	IUPAC (systematic name)
	butan-2-amine
CH ₃ -CH ₂ -CH ₂ -CH-CH ₃ OH	
CH_3 $CH_3 - C = CH - CH_2 - CH_2 - CH_3$	
	iodoethane

2020: Question: 1b: Classify the alcohol in the table above as primary, secondary, or tertiary, and explain your choice.

$$CH_3 - CH_2 - CH_2 - CH - CH_3$$

Writing Excellence answers to Cis-Trans Isomers questions

Cis-Trans Isomers QUESTION


Question: Molecule D can exist a same molecular formula.	as geometric (<i>cis</i> and <i>trans</i>)	isomers,	with both i	somers having the
Draw the geometric (<i>cis</i> and <i>trans</i>) isomers for molecule D in the boxes below. Justify why molecule D can exist as geometric (<i>cis</i> and <i>trans</i>) isomers. Your answer should include:		A CH ₃ C	CI L CHCH2CH3	B CH ₃ CH ₂ CH ₂ CI
		C CH ₃ CH ₂ CHCCl ₂		D CH ₃ CH ₂ CHCHCI
 an explanation of the requireme reference to the structure of mo		E CH ₃ CH ₂ CH ₂ CHCl ₂		F CH ₃ CH ₂ CH ₂ CH ₂ CI
	ANSWER			
1. Draw the cis and trans isomers	Cis		Trans	
If you need to select the molecule make sure that it has both: a C=C double bond and 2 different groups of each C				
	Name:		Name:	
2. link the presence of a double C=C bond to lack of rotation				
3. link the requirement of two different groups of each of the C on the double				
4. link the requirements above to your specific molecule (D)				
5. Explain how two geometric isomers can have the same molecular formula				
NOTE: The white column is how your an	swer would appear on your tost	naner so m	ake sure vou	write out complete

NOTE: The white column is how your answer would appear on your test paper so make sure you write out complete sentences. The grey area is just to help you structure your answer and would not appear in the question.

GZ Scher Resource

2. Isomers: cis/trans

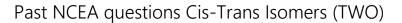
The double bond prevents the carbons on either end rotating like single bonds do, therefore, the groups attached to the carbons remain "fixed" on their respective sides

Past NCEA questions Cis-Trans Isomers (ONE)

2013: Question 1c: Molecule D can exist as geometric (cis and trans) isomers.

Draw the geometric (*cis* and *trans*) isomers for molecule D in the boxes below. Justify why molecule D can exist as geometric (*cis* and *trans*) isomers.

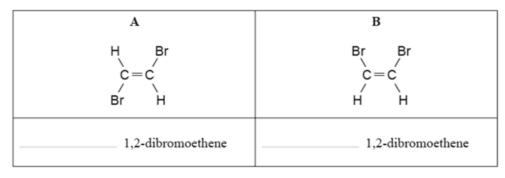
Your answer should include:


- an explanation of the requirements for *cis* and *trans* isomers
- reference to the structure of molecule D.

Α		В
	CI I CH ₃ CHCH ₂ CH ₃	CH ₃ CH ₂ CH ₂ CI
С		D
	CH3CH2CHCCI2	CH3CH2CHCHCI
Е		F
	CH3CH2CH2CHCI2	CH ₃ CH ₂ CH ₂ CH ₂ CI

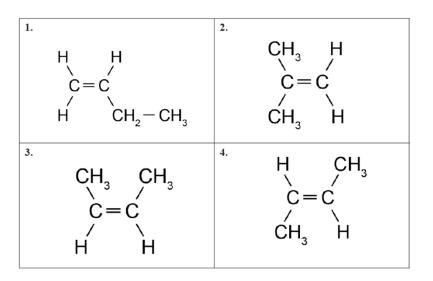
2014: Question: 2b: The structures of three organic compounds are shown below. Explain why compound A can exist as geometric (*cis* and *trans*) isomers, but compounds B and C cannot. In your answer you should: (i) draw the geometric (*cis* and *trans*) isomers of compound A

Compound A	$CH_3 - CH_2 - CH = CH - CH_3$
Compound B	$CH_3 - CH_2 - CH_2 - CH = CH_2$
Compound C	$\mathrm{CH_3-CH_2-CH_2-CH_2-CH_3}$

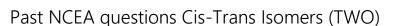


2014: Question: 2b: (ii) explain the requirements for geometric (*cis* and *trans*) isomers by referring to compounds A, B, and C above

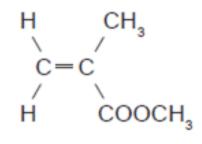
2015: Question: 2a: (ii) Explain why 1,1-dichloroethene cannot exist as a *cis-trans* isomer.


2015: Question: 2a: (iii) A structural isomer of 1,1-dichloroethene can exist as *cis-trans* isomers. Draw and name the *cis-trans* isomers.

2016: Question: 1c: Some alkenes are able to form *cis* and *trans* (geometric) isomers. (i) Complete the names of structures A and B in the table below.


2016: Question: 1c: (ii) Elaborate on the structure of the organic compound 1,2-dibromoethene to explain why it is able to form *cis* and *trans* (geometric) isomers.

2017: Question: 2c: (ii) Identify the compounds that are *cis* and *trans* (geometric) isomers from the table. Justify your choices, and explain why only these two compounds are *cis* and *trans* (geometric) isomers.



	cis	trans
Number		

2018: Question: 1c: (ii) Justify whether or not the monomer used to produce Perspex[®] is a geometric (cis-trans) isomer by explaining the features required for this type of isomerism

2019: Question: 1c: Refer to the compounds in the table below to answer parts (i) to (ii).

Α	$CH_3 - CH = CH - CH_3$
В	$CH_3 - CH_2 - CH_2 - CH_3$

(i) Draw and name the two geometric (*cis-trans*) isomers of compound A.

(ii) Explain why compound A exists as geometric (*cis-trans*) isomers while compound B does not.

2020: Question: 2b: The C₄H₈ (butene) molecule can display different forms of isomerism.

A	В	С
CH ₂ =CHCH ₂ CH ₃	$H_{3}C$ CH_{3} C=C H H	$H CH_{3}$ $C = C$ $H_{3}C H$

(i) Circle the form of isomerism that exists between molecules A and B.

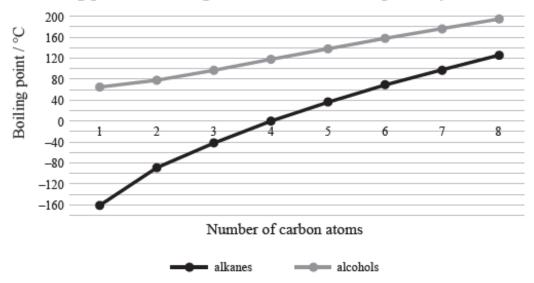
constitutional / structural geometric

(ii) Circle the form of isomerism that exists between molecules B and C.

constitutional / structural geometric

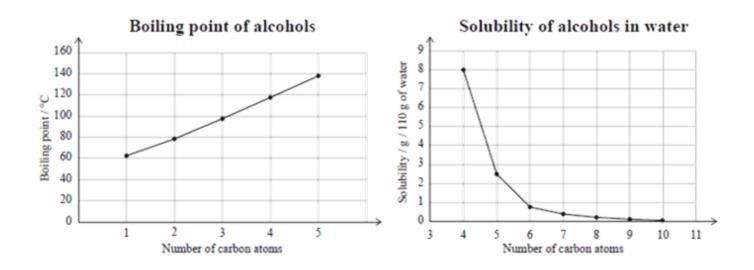
(iii) Compare and contrast the two forms of isomerism. In your answer, you should: explain the requirements for each form of isomerism and refer to molecules A, B, and C.

Writing Excellence answers to Physical Properties of Organic Compounds questions


Solubility - Physical Properties of Organic Compounds QUESTION		
Question: Explain why two layers	form in Reaction One. Hexane reacts with bromine water ANSWER	
1. Identify the functional group of your substance (hexane) and name the product formed.	ANSWER	
2. link observation (layers forming) to the polarity of the substance		
3. identify the polarity of the bromine water and link to the substances being immiscible (forming 2 layers)		
Melting point - Question: Identify the trends show Identify which alkanes will be gases a according to the graph beside.	at room temperature (20°C) $ \begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \\ -10 \\ -1$	
	ANSWER	
1. link the boiling point trend to number of carbons in <u>both groups</u> (when explaining trends on a line graph always relate one variable to the other)		
2. Identify which alkanes (number of carbons) are gases at room temp. (will have boiling point below 20°C)		

NOTE: The white column is how your answer would appear on your test paper so make sure you write out complete sentences. The grey area is just to help you structure your answer and would not appear in the question.

Past NCEA questions Physical Properties of Organic Compounds


2014: Question 1c: Explain why two layers form in Reaction One. Hexane reacts with bromine water 2016: Question 2a (i): Identify the trends shown on the graph

Boiling points of straight chain alkanes and primary alcohols

2016: Question 2a (ii) Identify which alkanes will be gases at room temperature (20°C) according to the graph above.

2018: Question: 3a: The graphs below show trends in two physical properties of alcohols. Identify the trends shown on the graphs below

Writing Excellence answers to Haloalkane Reactions questions

Haloalkane Reactions QUESTION

Question: Chloroethane, CH₃CH₂Cl, reacts with aqueous KOH, alcoholic KOH, and with NH₃. Compare and contrast the reactions of chloroethane with the three reagents. In your answer you should include:

- the type of reaction occurring and the reason why it is classified as that type
- the type of functional group formed
- equations showing structural formulae for reactions occurring.

ANSWER
Product formed
Reaction type
Condensed Structural Formula equation
Structural Formula equation
Product formed
Reaction type
Condensed Structural Formula equation
Structural Formula equation
Product formed
Reaction type
Condensed Structural Formula equation
Structural Formula equation

NOTE: The white column is how your answer would appear on your test paper so make sure you write out complete sentences. The grey area is just to help you structure your answer and would not appear in the question.

Writing Excellence answers to Alcohol Reactions questions

Alcohol Reactions QUESTION

Question: Butan-1-ol can react separately with each of PCI_5 , $Cr_2O_7^{2-}$ / H⁺, and concentrated H₂SO₄. Elaborate on the reactions of butan-1-ol with each of the three reagents. For each reaction, your answer should include:

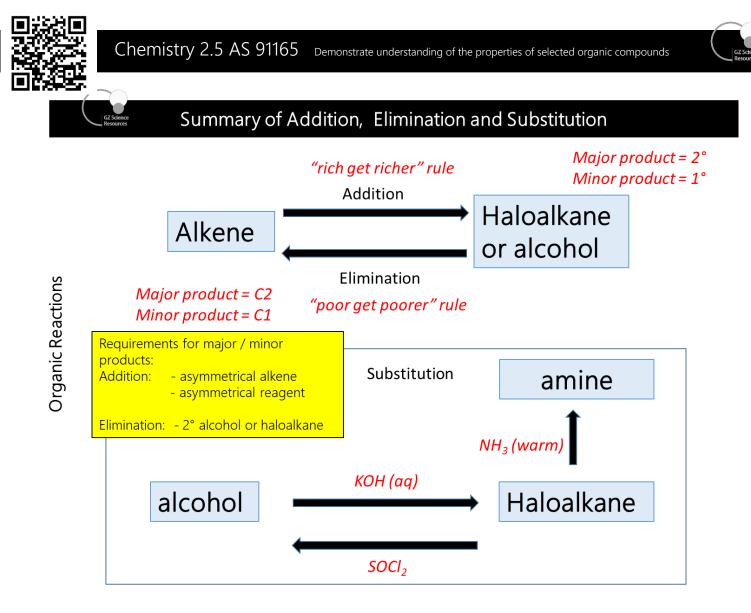
- the type of reaction occurring and the reason why it is classified as that type
- the name of the functional group formed in each product
- the structural formula of the organic product.

	ANSWER
Reaction 1	Product formed
Butan-1-ol reacts with PCl₅	Reaction type
	Condensed Structural Formula equation
	Structural Formula equation
	Product formed
Reaction 2	Reaction type
Butan-1-ol reacts with $Cr_2O_7^{2-}/H^+$	Condensed Structural Formula equation
	Structural Formula equation
	Product formed
Reaction 3	Reaction type
Butan-1-ol reacts with concentrated H ₂ SO ₄	Condensed Structural Formula equation
	Structural Formula equation

NOTE: The white column is how your answer would appear on your test paper so make sure you write out complete sentences. The grey area is just to help you structure your answer and would not appear in the question.

Writing Excellence answers to Alkene Reactions questions

Alkene Reactions QUESTION


Question: Ethene, $C_2H_{4(g)}$, reacts with aqueous potassium permanganate solution, KMnO_{4(aq)}, dilute acid, H₂O / H⁺, and hydrogen bromide, HBr.

Compare and contrast the reactions of ethene gas with each of these three reagents.

In your answer, you should:

- describe any observations that can be made
- identify, with reasons, the type of reaction ethene undergoes with each reagent
- describe the functional group of the products formed
- include equations showing the structural formulae for the organic compounds for each reaction.

Reaction 1	Observations
Ethene, $C_2H_{4(g)}$ reacts with aqueous	
potassium permanganate solution, KMnO _{4(aq)} ,	Reaction type
	Functional group of products
	Structural Formula equation
	Observations
Reaction 2 Ethene, $C_2H_{4(g)}$ <i>reacts with</i> dilute	Reaction type
acid, H₂O / H⁺	Functional group of products
	Structural Formula equation
Reaction 3	Observations
Ethene, C ₂ H _{4(g)} reacts with hydrogen bromide, HBr.	Reaction type
	Functional group of products
	Structural Formula equation
Summary of the three reactions	

Past NCEA questions Comparing Reactions (ONE)

2012: Question 2d: Chloroethane, CH₃CH₂Cl, reacts with aqueous KOH, alcoholic KOH, and with NH₃. Compare and contrast the reactions of chloroethane with the three reagents.

In your answer you should include:

- the type of reaction occurring and the reason why it is classified as that type
- the type of functional group formed
- equations showing structural formulae for reactions occurring.

2013: Question 3a: Butan-1-ol can react separately with each of PCI₅, $Cr_2O_7^{2-}$ / H⁺, and concentrated H₂SO₄.

Elaborate on the reactions of butan-1-ol with each of the three reagents.

For each reaction, your answer should include:

- the type of reaction occurring and the reason why it is classified as that type
- the name of the functional group formed in each product
- the structural formula of the organic product.

2014: Question: 1c: The reactions shown below are all classified as being the same type of reaction.

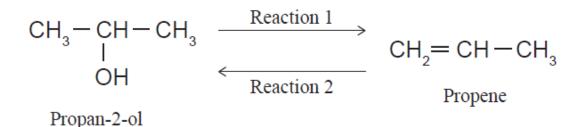
Compare and contrast these reactions.

In your answer you should:

• state whether any conditions are required

• describe the type of reaction occurring and explain why all three reactions are classified as this type of reaction

• explain why two layers form in Reaction One.


Reaction One	hexane, $CH_3CH_2CH_2CH_2CH_2CH_3$, reacts with bromine water, $Br_2(aq)$
Reaction Two	hexan-1-ol, $CH_3CH_2CH_2CH_2CH_2CH_2OH$, reacts with PCl_3
Reaction Three	1-chlorohexane, $CH_3CH_2CH_2CH_2CH_2CH_2CI$, reacts with conc NH_3 (alc)

2015: Question: 2b: In Reaction 1, propan-2-ol can be converted to propene.

In Reaction 2, propene can be converted back to propan-2-ol.

Analyse BOTH of these reactions by:

- □ describing the reagents and conditions needed for each reaction to occur
- □ identifying each type of reaction and explaining your choice
- explaining why Reaction 1 forms only a single organic product, but Reaction 2 forms a mixture of organic products.

2015: Question: 3b: Ethene, C₂H_{4(g)}, reacts with aqueous potassium permanganate solution, KMnO_{4(aq)}, dilute acid, H₂O / H⁺, and hydrogen bromide, HBr.

Compare and contrast the reactions of ethene gas with each of these three reagents.

In your answer, you should:

- describe any observations that can be made
- identify, with reasons, the type of reaction ethene undergoes with each reagent
- describe the functional group of the products formed
- include equations showing the structural formulae for the organic compounds for each reaction.

Past NCEA questions Comparing Reactions (THREE)

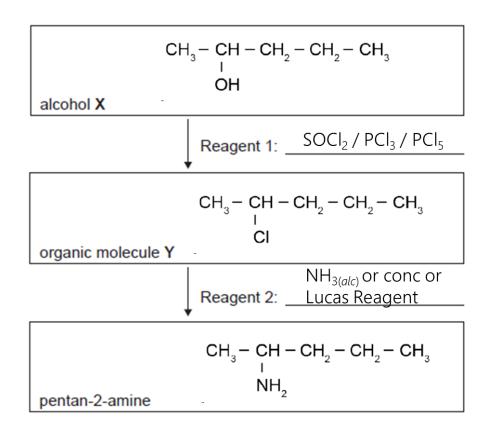
2016: Question 2c: Ethane gas, $C_2H_{6(g)}$, and ethene gas, $C_2H_{4(g)}$, will both react with bromine water, $Br_{2(aq)}$. Compare and contrast these two reactions.

In your answer you should refer to:

- any conditions required
- the observations made
- the types of reactions occurring
- structural formulae of the organic products formed.

2018: Question: 3b: Reacting 2-chloropropane with potassium hydroxide, KOH, can produce different products due to different reactions occurring.

(i) Elaborate on the reactions of 2-chloropropane with potassium hydroxide, KOH.


In your answer you should:

- identify the conditions of the reagent KOH
- explain the types of reaction that occur with the reagent in each condition
- draw structural formulae of the organic products.

2018: Question: 2c: (ii) Elaborate on the reactions in the scheme below.

In your answer you should identify:

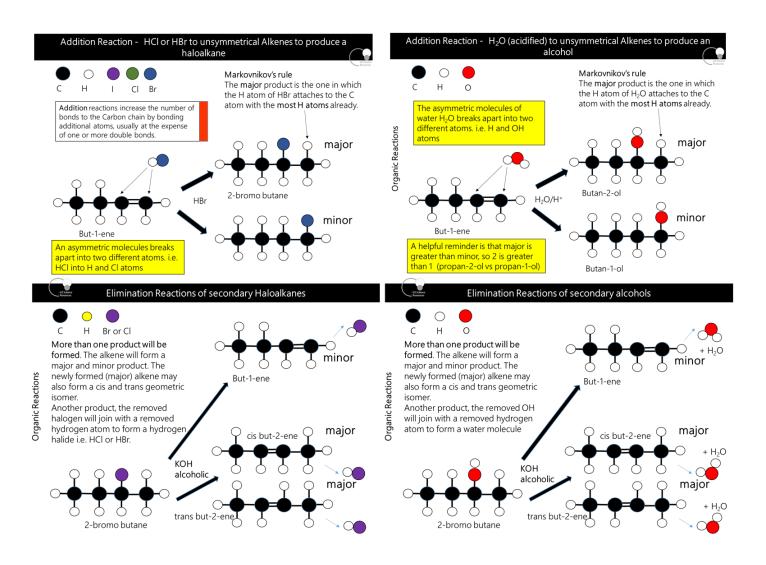
- any conditions needed for each step of the conversion
- the names of alcohol X and organic molecule Y
- the type of reaction that is occurring for each step of the conversion.

Past NCEA questions Comparing Reactions (FOUR)

2020: Question: 1c: Depending upon the conditions in which it is used, sulfuric acid, H_2SO_4 , can enable the two reactions below to occur.

alcohol → alkene

alkene → alcohol


(i) In the boxes below, draw the structural formula for a molecule containing two carbon atoms that could be used in the reactions above.

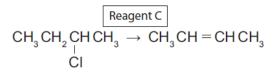
(ii) Elaborate on how sulfuric acid is used in the conversion of both an alcohol to an alkene, and an alkene to an alcohol.

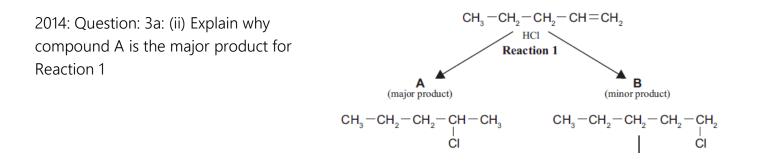
In your answer you should:

•state the conditions required for each reaction

•state the type of reaction occurring in each case, and justify your choices.

Writing Excellence answers to Major and Minor products questions


Major and Minor Products QUESTIONQuestion:In Reaction 1, propan-2-ol can be converted to propene.In Reaction 2, propene can be converted back to propan-2-ol.Analyse BOTH of these reactions by: \Box describing the reagents and conditions needed for each reaction to occur \Box identifying each type of reaction and explaining your choice \Box explaining why Reaction 1 forms only a single organic product, but Reaction 2 forms a mixture of organic products. $CH_3 - CH - CH_3$ $H_3 - CH - CH_3$			
Pro	opan-2-ol		
1. Reaction 1 Propan – 2-ol forms propene	ANSWER Reagent and conditions		
	Reaction type		
	Structural Formula		
2. Reaction 2	Reagent type and conditions		
Propene forms propanol Label each structure with name	Reaction type		
and whether it is major or minor	Structural Formula		
	Product type: Name:	Product type: Name:	
3. Explain why <u>reaction one</u> forms only one product linked to symmetry			
4. State Markovnikov's rule AND Explain the reason <u>reaction two</u> produces two products linked to Markovnikov's rule and asymmetry, including which is major and which is minor.			


NOTE: The white column is how your answer would appear on your test paper so make sure you write out complete sentences. The grey area is just to help you structure your answer and would not appear in the question.

Past NCEA questions Major and Minor Products

2013: Question 3a: For the following reaction: describe if the product formed is major or minor. Explain your answer.

2015: Question: 2b: In Reaction 1, propan-2-ol can be converted to propene.

In Reaction 2, propene can be converted back to propan-2-ol. Analyse BOTH of these reactions by:

- describing the reagents and conditions needed for each reaction to occur
- □ identifying each type of reaction and explaining your choice
- explaining why Reaction 1 forms only a single organic product, but Reaction 2 forms a mixture of organic products.

$$\begin{array}{c} \mathsf{CH}_{3} - \underbrace{\mathsf{CH} - \mathsf{CH}_{3}}_{\mathsf{I}} & \xrightarrow{\text{Reaction 1}} \\ \mathsf{OH} & \xleftarrow{\text{Reaction 2}} & \operatorname{CH}_{2} = \operatorname{CH} - \operatorname{CH}_{3} \\ \end{array}$$
Propene
Propene

2016: Question 3c: The reaction between propene, $C_3H_{6(g)}$, and hydrogen chloride, $HCl_{(g)}$, produces a mixture of products.

(ii) Elaborate on the reaction that occurs between propene and hydrogen chloride.

2017: Question 1b: (iii) 2-bromo-3-methylbutane also reacts with conc. KOH_(alc). However, in this reaction TWO organic products are formed, a major and a minor product. Give an account of the chemical processes that occur in this reaction. In your answer you should:

- write an equation for this reaction showing the organic compounds
- name the type of reaction occurring
- explain how the products form
- explain which product you would expect to be the minor product.

Past NCEA questions Major and Minor Products

2018: Question: 1d: When but-1-ene is reacted to form bromobutane, C_4H_9Br , two organic products are formed.

Analyse this reaction by:

- stating the reagent required
- identifying the type of reaction and justifying your choice
- explaining why there is a mixture of organic products.

2019: Question: 2b: Explain how you identified the major and minor products (C: 2-bromopropane

D: 1-bromopropane) in the reaction of propene with hydrogen bromide solution, HBr_(aq).

2019: Question: 2c: Compare and contrast the reaction that forms compound B (propan-2-ol OR propan-1-ol) to the reverse reaction that forms propene, C_3H_6 , from compound B (propan-2-ol OR propan-1-ol).

2020: Question: 3a: When 3-methyl-2-chlorobutane, shown below, is reacted with KOH_(alc) and heated, a mixture of products are formed.

(i) Draw the two products from this reaction.

Major product:	Minor product:

(ii) Give an account of the chemical process that occurs in this reaction.

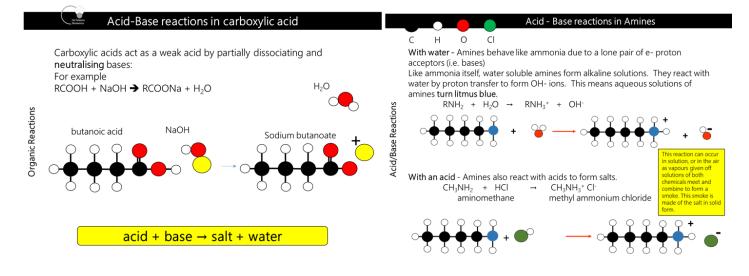
In your answer you should:

- state the type of reaction and explain your choice
- explain why two products form, and justify how you decided which are the major and minor products.

swer by drawing structural formulae for but-1-ene and the organic products.

Writing Excellence answers to Acid-Base Reactions questions

Acid-Base Reactions QUESTION


Question: Question 3c: Compounds B (CH₃COOH) and E (CH₃CH₂NH₂) react together. (i) Write a balanced equation for the reaction that occurs between compounds B and E. (ii) Identify the type of reaction that occurs between compounds B and E. Justify your answer.

	ANSWER	
1. Draw the structural formula of the acid and base	Acid (carboxylic acid)	Base (amine)
Identify which hydrogen ion will be donated in the acid (-COOH end) and which part of the base will accept the hydrogen ion (-NH ₂ end)		
2. Write a balanced equation		
3. Name the type of reaction		
4. Explain what occurs in the reaction generally		
5. Explain in detail what occurs in the acid – and the product formed		
5. Explain in detail what occurs in the base – and the product formed		

NOTE: The white column is how your answer would appear on your test paper so make sure you **write out complete sentences**. The grey area is just to help you structure your answer and would not appear in the question.

8. Acid Base Reactions

Past NCEA questions Acid and Base reactions

2014: Question: 2c: Sodium carbonate, hydrochloric acid, and sulfuric acid are each added to separate samples of three organic compounds. Compare and contrast the reactions that do occur between these organic compounds, and the reagents in the table above. In your answer you should:

- **Give the structure of the organic products (i) and (ii)**
- □ describe the different types of reactions occurring, and give reasons why they are classified as that type
- □ identify any specific conditions that are required for the reactions to occur.

	Organic compound		
Reagent	$CH_3 - CH_2 - C - OH$	$CH_3 - CH_2 - CH_2 - NH_2$	$\mathrm{CH_3-CH_2-CH_2-OH}$
Na ₂ CO ₃	(i)	no reaction	no reaction
HCl	no reaction	(ii)	$CH_{3}-CH_{2}-CH_{2}-CI$
H ₂ SO ₄	no reaction	$CH_3 - CH_2 - CH_2 - NH_3^+$	$CH_3 - CH = CH_2$

Past NCEA questions Acid and Base reactions

2016: Question 2b: Solutions of amines are described as bases, and solutions of carboxylic acids are described as acids.

(i) Complete the balanced equation for the reaction between solutions of ethanamine, $CH_3CH_2NH_{2(aq)}$ and hydrochloric acid, $HCl_{(aq)}$.

 $\mathsf{CH}_3\mathsf{CH}_2\mathsf{NH}_2(\mathit{aq}) + \mathsf{HCI}(\mathit{aq}) \rightarrow$

(ii) Explain the statement 'carboxylic acids have acidic properties'. Refer to the reaction between ethanoic acid, $CH_3COOH_{(aq)}$, and water, $H_2O_{(l)}$ in your answer.

2017: Question 3b: Describe a simple test that will distinguish between solutions of the final organic compounds B (CH₃COOH) and E (CH₃CH₂NH₂).

2017: Question 3c: Compounds B (CH₃COOH) and E (CH₃CH₂NH₂). react together.

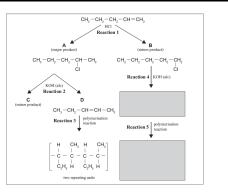
(i) Write a balanced equation for the reaction that occurs between compounds B and E.

(ii) Identify the type of reaction that occurs between compounds B and E.

Justify your answer.

2018: Question: 2a (ii): Give the structural formula and name for the product of the reaction between propan-1-amine, CH₃CH₂CH₂NH₂, and ethanoic acid, CH₃COOH to form a salt.

 $CH_{3}CH_{2}CH_{2}NH_{2(aq)} + CH_{3}COOH_{(aq)}$



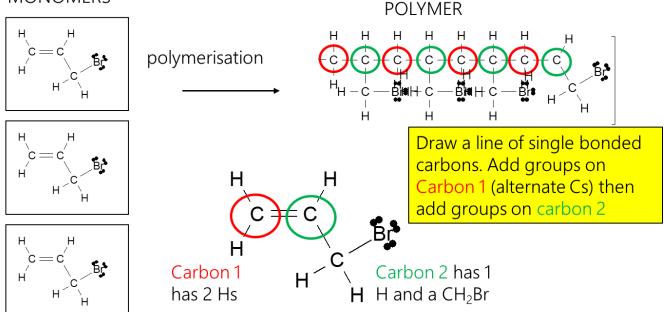
Polymers QUESTION

Question: Draw TWO repeating units of the polymer formed in Reaction Explain why the formation of the polymer from its monomer is classified as an addition polymerisation reaction.

Compare and contrast the polymer formed in Reaction 5 to the polymer formed in Reaction 3.

In your answer you should explain why the polymers formed in these two reactions are different.

	ANSWER	
1. Identify the monomer, then draw the polymer	monomer	polymer
(identify C 1 and C2 in monomer either side of the double bond then draw a chain of C (4 for 2 repeating units) and add on groups of each one removing double bond)		
2. explain the definition of addition polymerisation		1
3. molecule 1 (reaction 5) – describe the 2 groups of each end of the double bonded carbons		
4. molecule 2 (reaction 3) – describe the 2 groups of each end of the double bonded carbons		
5. Explain that molecule 1 and 2 are structural isomers but have the same molecular formula		

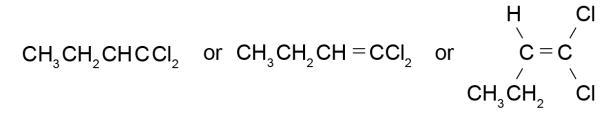


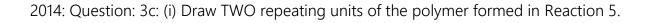
Monomers - smallest repeating unit with a double bond

Polymers – long chains of monomers joined with single bonds

Polymerisation – breaking of the double bond of each monomer and joining together with single bonds

MONOMERS

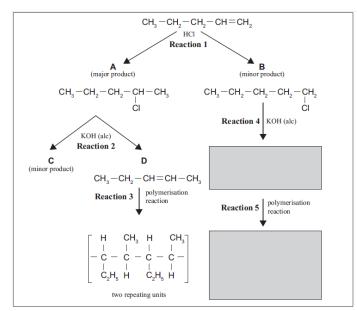



Past NCEA questions Polymers (ONE)

2013: Question: 2a: (i) The molecule tetrafluoroethene, shown below, is the monomer for the polymer commonly known as Teflon. $CF_2=CF_2$

Draw TWO repeating units of the polymer formed.

2013: Question: 2a: (ii) The following diagram shows three repeating sections of another polymer. Draw the structural formula of the monomer molecule used to make this polymer.



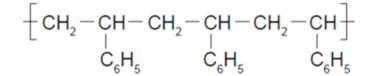
GZ Science Resources

Past NCEA questions Polymers (ONE)

2014: Question: 3c: (ii) Compare and contrast the polymer formed in Reaction 5 to the polymer formed in Reaction 3.

In your answer you should explain why the polymers formed in these two reactions are different.

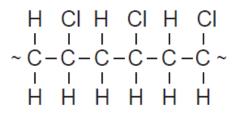
2014: Question: 3c: (ii) Compare and contrast the polymer formed in Reaction 5 to the polymer formed in Reaction 3. In your answer you should explain why the polymers formed in these two reactions are different.


2015: Question: 2a: (i) Cling Wrap is a polymer that can be made from the monomer 1,1-dichloroethene.

Draw THREE repeating units of the polymer formed.

1,1-dichloroethene

2016: Question 3b: Polystyrene is a polymer with the structure:

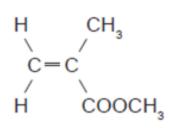


(i) Draw the monomer used to make the polymer polystyrene.

2016: Question 3b: (ii) Explain why the formation of polystyrene from its monomer is classified as an addition polymerisation reaction.

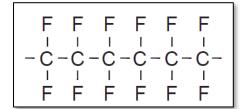
2017: Question 1a: Polyvinyl chloride (polychloroethene) is often used to make artificial leather. This can then be used to cover chairs, cover car seats, and make clothing. A section of a polyvinyl chloride molecule is shown below.

(i) Draw the monomer from which the polymer polyvinyl chloride would be made.


Past NCEA questions Polymers (TWO)

2017: Question 1a: (ii) Explain the difference in the structures and chemical reactivity of the monomer and polymer, and why the difference is important for the uses of the polymer.

2017: Question 1a (iii): Making polyvinyl chloride (polychloroethene) from its monomer is called 'addition polymerisation'.

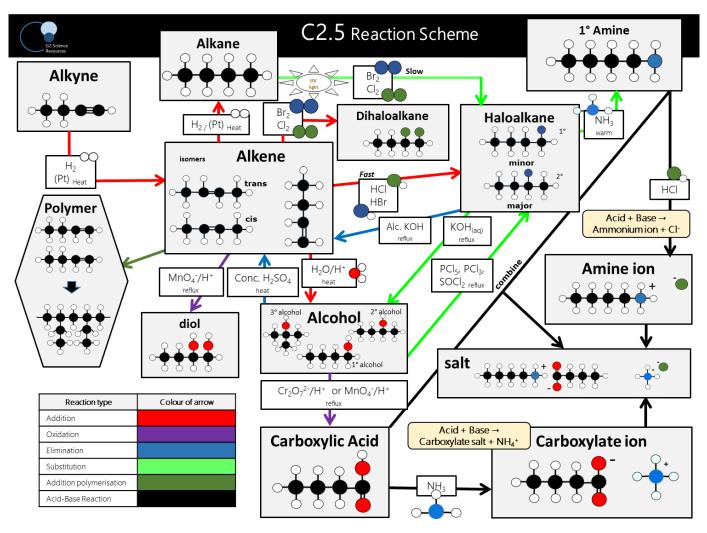

Explain the term 'addition polymerisation' using polyvinyl chloride as an example. Include an equation in your answer.

2018: Question: 1c: Perspex[®] is a polymer used as an alternative to glass as it is transparent, lightweight, and shatter resistant. It can be made from the monomer shown below.

(i) draw THREE repeating units of the polymer formed.

2020: Question: 2a: A section of the Teflon polymer chain is shown below. Teflon is best known for its use in coating non-stick frying pans and other cookware.

(i) draw and name the structure of the monomer used to make this polymer.


(ii) The chemical reactivity of the monomer and polymer are different.

Analyse this difference.

In your answer you should:

- link the structure of the monomer and polymer to its reactivity
- explain the importance of this difference for Teflon's use as a polymer.

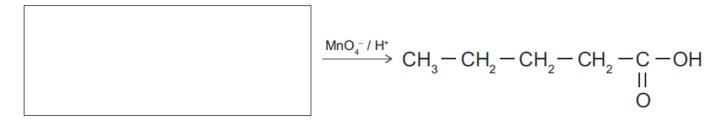
Past NCEA questions Reaction Schemes (ONE)

2013: Question 3a: The flow diagram below shows a reaction scheme for the conversion of but-1-ene into but-2-ene.

$$\begin{array}{c} \hline \\ \text{Reagent A} \\ \text{CH}_{3}\text{CH}_{2}\text{CH} = \text{CH}_{2} \rightarrow \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{CH} \\ \text{CH}_{3} \\ \text{CH$$

Use the reaction scheme above to complete the following table to show:

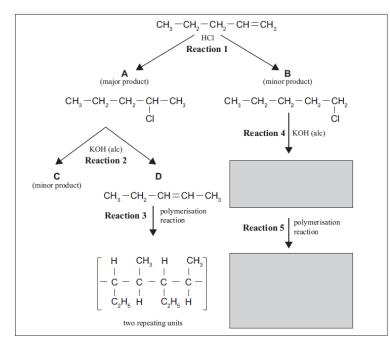
- the formula of each reagent, including any necessary conditions
- the type of reaction occurring.


Reagent	Formula of reagent / conditions	Type of reaction
A		
В		
С		

Past NCEA questions Reaction Schemes (TWO)

2014: Question: 1b: (i) When primary alcohols are oxidised by acidified permanganate, MnO_4^- / H^+ , they form carboxylic acids.

Draw the primary alcohol that was oxidised to form the carboxylic acid shown


2014: Question: 1b: (ii) Permanganate ion, MnO₄⁻, can be used to oxidise alkenes.

Draw the product of the following reaction

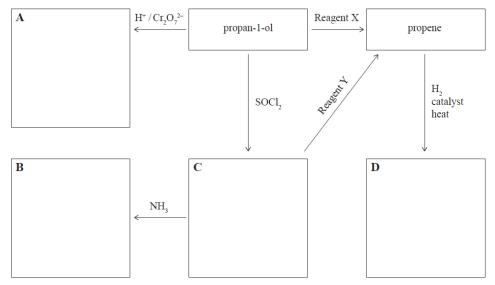
$$CH_3 - CH_2 - CH_2 - CH_2 - CH = CH_2 \xrightarrow{MnO_4^-}$$

2014: Question: 3a: (i) Explain why Reaction 1 from the reaction scheme, shown again below, is classified as an addition reaction.

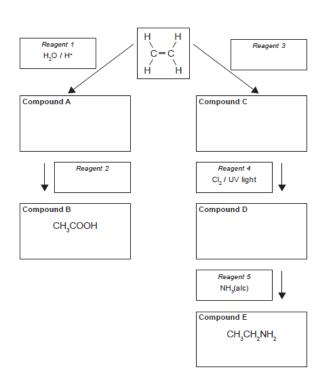
2014: Question: 3b: (i) Explain why Reaction 2 from the reaction scheme is classified as an elimination reaction.

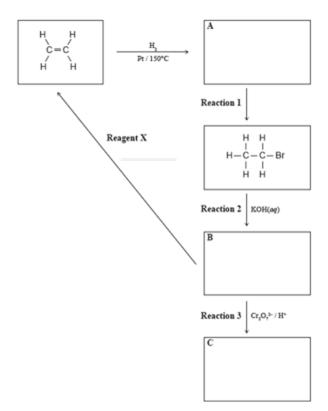
2014: Question: 3b: (ii) Reaction 4 is also an elimination reaction.

 Draw the structural formula of the product formed



Past NCEA questions Reaction Schemes (THREE)


2015: Question: 3a: (i) Complete the scheme above by drawing the structural formulae of the organic compounds A to D.


(ii) Circle the functional group of each of the organic compounds A, B, and C that you have drawn.(iii) Identify reagents X and Y.

2016: Question 3a (i): Complete the following chart to the right by drawing the structural formulae for the organic compounds A, B, and C and identifying reagent X. \rightarrow

(ii): Identify the type of organic reaction occurring in each of Reactions 1, 2, and 3.

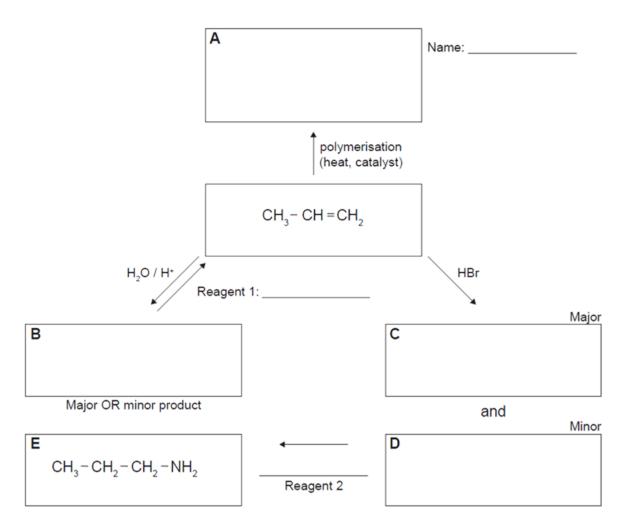
2017: Question 3a: (i) Complete the following reaction scheme to the left by drawing the structural formulae for the organic compounds A, C, and D, and identifying *reagents 2 and 3*.

2017: Question 3a: (ii) Identify the types of reactions that occur to produce compounds A, B, C, D, and E:

Past NCEA questions Reaction Schemes (FOUR)

2018: Question: 2c: Many organic reactions take more than one step in order to convert from one organic molecule to another. Two steps are required to produce pentan-2-

amine from an alcohol. Use the information given to analyse the

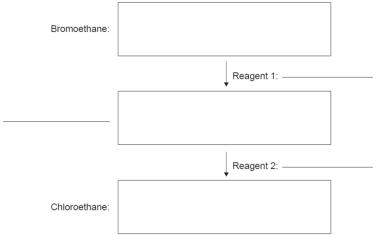

reactions.

(i) Draw the structural formulae of the

compounds, and name the reagents involved in the process.

alcohol X
Reagent 1:
organic molecule Y
Reagent 2:
pentan-2-amine

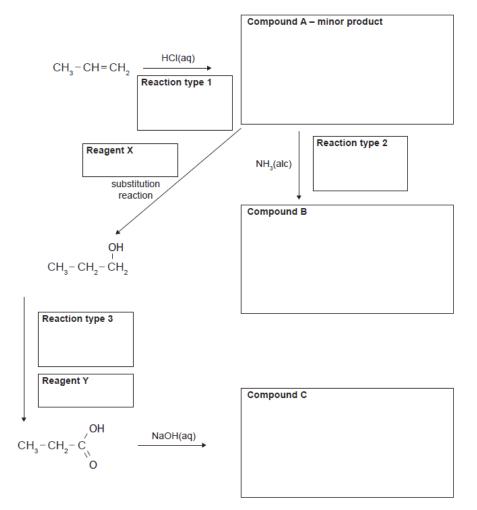
2019: Question: 2a: Complete the following reaction scheme for propene, C_3H_6 , by drawing the structural formulae for the organic compounds A to D, naming compound A and identifying Reagents 1 and 2, including any conditions.



Past NCEA questions Reaction Schemes (FIVE)

2019: Question: 3b: The conversion of bromoethane to chloroethane requires two steps, with alcohol as an intermediate product.

(i) Use this information to complete the reaction scheme below by drawing the structural formulae of each organic molecule and naming the intermediate alcohol and the reagents required.



(ii) Elaborate on the reaction scheme for this conversion. In your answer, you should identify:

• any conditions needed for each step of the conversion

• the type of reaction occurring for each step of the conversion.

2020: Question: 1d: Complete the following reaction scheme by drawing the structural formulae for the organic compounds A, B and C, identifying reagents X and Y, and reaction types 1, 2, and 3.

Writing Excellence answers to Identifying Unknowns questions

Identifying Unknowns QUESTION

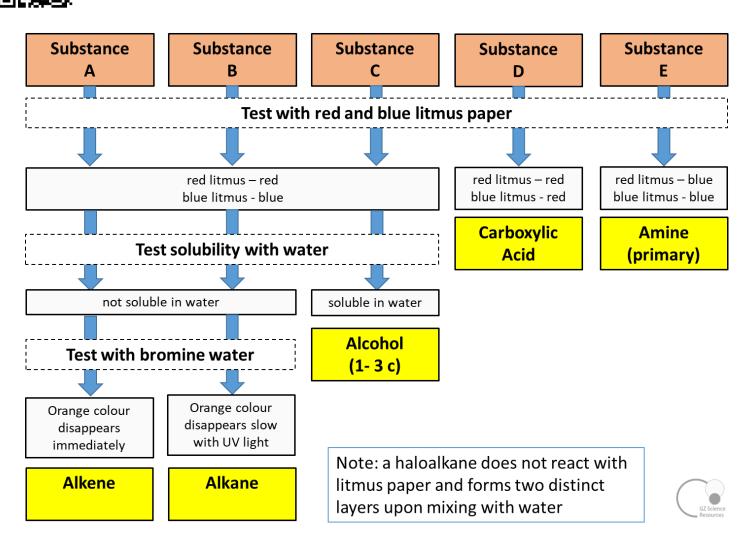
Question: Question: 1c:

Four separate colourless organic liquids are known to be: • ethanol • ethanoic acid • hex-2-ene • 1aminohexane

Write a procedure to identify each of these organic liquids using only the reagents listed below.

• acidified dichromate solution, $Cr_2O_7^{2-}/H^+_{(aq)}$ • bromine water, $Br_{2(aq)}$ • sodium carbonate solution, $Na_2CO_{3(aq)}$. In your answer, you should:

- identify the test reagents used
- describe any observations that would be made
- · identify the type of reaction that occurs
- identify the organic product of any reaction.


You do not need to include equations in your answer.

Step 1 Test reagents used Observations	
Living of reaction that occurs	
Type of reaction that occurs	
Organic product of any reaction	
Test reagents used	
Step 2 Observations	
Type of reaction that occurs	
Organic product of any reaction	
Test reagents used	
Step 3. Test reagents used Observations	
Observations	
Type of reaction that occurs	
Organic product of any reaction	
Step 4. Test reagents used	
Step 4. Test reagents used Observations	
Observations	
Type of reaction that occurs	
Organic product of any reaction	

NOTE: The white column is how your answer would appear on your test paper so make sure you write out complete sentences. The grey area is just to help you structure your answer and would not appear in the question.

Past NCEA questions Identifying Unknowns

2013: Question 2b: Five separate colourless organic liquids are known to be:

pentan-1-ol ethanol pent-1-ene pentane ethanamine.

Write a valid method to show how each of these liquids can be identified using only water, litmus paper, and bromine water, $Br_{2(aq)}$. Your method should allow another student to identify these liquids, and include:

the reagent used and any observations made.

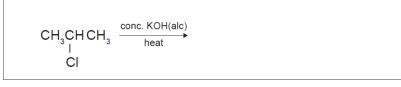
2015: Question 1c: Four separate colourless organic liquids are known to be:

• ethanol • ethanoic acid • hex-2-ene • hexan-1-amine (1-aminohexane).

Write a procedure to identify each of these organic liquids using only the reagents listed below.

• acidified dichromate solution, $Cr_2O_7^{2-}/H^+_{(aq)}$ • bromine water, $Br_{2(aq)}$ • sodium carbonate solution, $Na_2CO_{3(aq)}$.

In your answer, you should: • identify the test reagents used • describe any observations that would be made

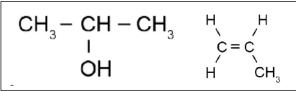

identify the type of reaction that occurs
identify the organic product of any reaction.
You do not need to include equations in your answer.

Past NCEA questions Identifying Unknowns

2017: Question 1b: A chemistry class was learning about the chemistry of haloalkanes. They were researching the effect of heat and concentrated potassium hydroxide in ethanol, conc. KOH(alc), on the haloalkane 2-chloropropane. (i) Draw the organic product formed in the following reaction.

2017: Question 1b: (ii) Explain how the functional group of the organic product drawn above could be identified.

2018: Question: 2a: Two bottles of different colourless organic liquids are unlabelled. They are known to be propan-1-amine, $CH_3CH_2CH_2NH_2$, and ethanoic acid, CH_3COOH .


(i) Explain how you could identify these two liquids using only solid sodium hydrogen carbonate, NaHCO_{3(s)}.

2018: Question: 2b: Three more unlabelled bottles of colourless organic liquids are known to contain hexane, hex-1-ene, and ethanol. Write a procedure to identify each of these liquids using only bromine water, $Br_{2(aq)}$, and water, H_2O . In your answer you should explain any observations that would be made. You do not need to include equations in your answer.

2018: Question: 3b: (ii) Elaborate on chemical tests that could be used to identify the functional groups of the organic products formed in part (i).

In your answer, you should:

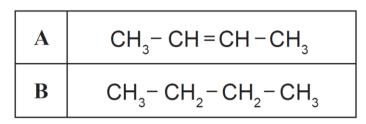
- identify chemicals and conditions required
- describe any observations
- state the type of reaction occurring

• explain why potassium permanganate solution, KMnO4(*aq*), cannot be used to distinguish between these organic products.

2019: Question: 1c: (iii) Explain how acidified potassium permanganate solution, $KMnO_4 / H^+_{(aq)}$, can be used to distinguish between compounds A and B.

Α	$CH_3 - CH = CH - CH_3$
В	$CH_3 - CH_2 - CH_2 - CH_3$

In your answer you should:


- identify the type of reaction
- describe any relevant observations.

Past NCEA questions Identifying Unknowns

2019: Question: 1c: (iv) Compounds A and B will both react with bromine water, Br_{2(aq)}.

Compare and contrast these reactions by referring to the conditions required, the observations, the products formed, and the type of reaction.

2019: Question: 3a (i): Each circled functional group is found in different organic molecules commonly used in school laboratories:

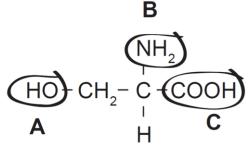
Using the list below, choose a reagent and describe the observations that could identify each of these functional groups.

- red litmus paper blue litmus paper
- bromine water, Br_{2(aq)}
- acidified dichromate solution, $H^+/ Cr_2O_7^{2-}_{(aq)}$

	Functional Group	Chemical test	Observations
A			
В			
С			

(ii): Describe an alternative method to distinguish between functional groups B and C. Identify the reagent needed, the expected observations, and explain the type of reaction occurring.

2020: Question: 3b (i) The labels have fallen off bottles of three colourless liquids. They are known to be ethanol, hexene, and propanoic acid. Explain how you would identify the liquids, using a solution of sodium hydrogen carbonate, NaHCO_{3(aq)}, and your knowledge of the physical and chemical properties of the compounds. In your answer you should: state any observations


- link your observations to chemical or physical properties of the organic molecule
- write chemical equations for any reactions that occur, including the structural formula of organic products.

(ii) Explain how you could use an alternative reagent to do a chemical test that would allow you to distinguish between hexene and propanoic acid. In your answer you should:

•identify a reagent

•state the observations that would allow you to distinguish the compounds

•identify any reaction type occurring.

Writing Excellence answers to Cis-Trans Isomers questions

same molecular formula. Draw the geometric (<i>cis</i> and <i>trans</i>) isomers for molecule D in the boxes below. Justify why molecule D can exist as geometric (<i>cis</i> and <i>trans</i>) isomers.		CI H CH ₃ CHCH ₂ CH ₃	B CH ₃ CH ₂ CH ₂ CI
Your answer should include: • an explanation of the requirement	× ·	CH3CH2CHCCI2	D CH ₃ CH ₂ CHCHCI
 reference to the structure of mo 		CH ₃ CH ₂ CH ₂ CHCl ₂	CH3CH2CH2CH2CI
	ANSWER		
 Draw the cis and trans isomers If you need to select the molecule make sure that it has both: a C=C double bond and 2 different groups of each C 	Cis H H I I C=C cis	$\begin{array}{c} \text{Trans} \\ H \\ I \\ C = C \end{array}$	H ₂ CH ₃ trans
(name of molecules not normally required as part of the question)	I I CI CH ₂ CH ₃ Name: cis 1-chlorobut-1-ene	I I CI H Name: trans	1-chlorobut-1-ene
2. link the presence of a double C=C bond to lack of rotation	For <i>cis</i> and <i>trans</i> isomers to occur a carbon-carbon double bond must be present as this prevents any rotation about this bond, and the atoms or groups of atoms attached to the two carbon atoms are therefore fixed in position.		
3. link the requirement of two different groups of each of the C on the double	They must also have two different groups attached to each carbon (involved in the double bond).		
4. link the requirements above to your specific molecule (D)	This molecule has a carbon-carbon double bond. One carbon of the double bond is attached to a hydrogen atom and an ethyl group. The other is attached to a hydrogen atom and a chlorine atom.		
5. Explain how two geometric isomers can have the same molecular formula	When these two requirements are met, the two haloalkenes can have the same molecular formula and the same sequence of atoms in the formula, but a different arrangement in space (a different 3D formula), hence they are <i>cis</i> and <i>trans</i> isomers.		

NOTE: The white column is how your answer would appear on your test paper so make sure you **write out complete sentences**. The grey area is just to help you structure your answer and would not appear in the question.

Writing Excellence answers to Physical Properties questions

Solubility - Ph	ysical Properties of Organic Compounds QUESTION	
Question: Explain why two layers form in Reaction One. Hexane reacts with bromine water		
1. Identify the functional group of your substance (hexane) and name the product formed.	ANSWER Hexane is an alkane, with single bonded carbons. When reacting with bromine water it will form a haloalkane (bromohexane) during a substitution reaction	
2. link observation (layers forming) to the polarity of the substance	Two layers form in Reaction One as hexane is non-polar and the product (bromohexane) is effectively also non-polar.	
3. identify the polarity of the bromine water and link to the substances being immiscible (forming 2 layers)	The water from the bromine water is polar and therefore the non-polar organic reactant and product will not dissolve in the water; because of this, two layers form as this polar and non-polar layer do not mix.	
Melting point -	Physical Properties of Organic Compounds QUESTION	
Question: Identify the trends shown on the graph. Identify which alkanes will be gases at room temperature (20°C) according to the graph beside. Boling points of straight chain alkanes and primary alcoho.		
1. link the boiling point trend to number of carbons in <u>both groups</u> (when explaining trends on a line graph always relate one variable to the other)	ANSWER The boiling points of both alkanes and alcohols increase as the number of C atoms increases. The boiling points of alcohols are always higher than the alkanes (with the same number of C atoms).	
2. Identify which alkanes (number of carbons) are gases at room temp. (will have boiling point below 20°C)	Alkanes with 1, 2, 3, and 4 C atoms (methane, ethane, propane, and butane) will be gases at room temperature.	

Writing Excellence answers to Haloalkane reactions questions

Haloalkane reactions QUESTION

Question: Chloroethane, CH₃CH₂Cl, reacts with aqueous KOH, alcoholic KOH, and with NH₃. Compare and contrast the reactions of chloroethane with the three reagents. In your answer you should include:

- the type of reaction occurring and the reason why it is classified as that type
- the type of functional group formed
- equations showing structural formulae for reactions occurring.

	ANSWER	
Reaction 1	Product formed - forms an alcohol, ethanol	
Chloroethane reacts with KOH _(aq)	Reaction type - in a substitution reaction; CI is replaced by OH.	
(aq)	Condensed Structural Formula equation $CH_3CH_2CI \rightarrow CH_3CH_2OH$	
	Structural Formula equation	
	$\begin{array}{cccc} H & CI & H & O \\ I & I & H & O \\ H - C - C - H & \longrightarrow H - C - C - H \\ I & I & H & H \end{array}$	
Reaction 2 Chloroethane reacts with KOH _(alc)	Product formed - forms an alkene, ethane (plus a HCl molecule) Reaction type - in an elimination reaction; H and Cl removed / HCl formed.	
	Condensed Structural Formula equation $CH_3CH_2CI \rightarrow CH_2 = CH_2 + HCI$ Structural Formula equation	
Reaction 3 Chloroethane reacts with NH _{3(alc)}	$\begin{array}{cccc} H & H & H & H & H \\ H - C - C - H \longrightarrow & C = C & H - CI \\ H & I & H & H \\ H & CI & H & H \end{array}$	
	Product formed - forms an amine, aminoethane Reaction type - in a substitution reaction; CI is replaced by NH ₂	
	Condensed Structural Formula equation $CH_3CH_2CI \rightarrow CH_3CH_2NH_2$ Structural Formula equation	
	$\begin{array}{cccc} H & CI & H & N \\ H & I & I & H & N \\ H - C - C - H & \longrightarrow H - C - C - H \\ H & H & H & H \end{array}$	

Writing Excellence answers to Alcohol Reactions questions

Alcohol Reactions QUESTION

Question: Butan-1-ol can react separately with each of PCI_5 , $Cr_2O_7^{2-}/H^+$, and concentrated H_2SO_4 . Elaborate on the reactions of butan-1-ol with each of the three reagents. For each reaction, your answer should include:

- the type of reaction occurring and the reason why it is classified as that type
- the name of the functional group formed in each product
- the structural formula of the organic product.

	ANSWER
Reaction 1	Product formed – The functional group in the product is a chloro group
Butan-1-ol reacts with PCI ₅	/ chloroalkane (haloalkane) 1-chlorobutane
	Reaction type - Reaction with PCI ₅ is a substitution reaction. The hydroxyl
	group (–OH) is replaced by a chloro group (–Cl).
	Condensed Structural Formula equation
	$CH_3CH_2CH_2CH_2OH \rightarrow CH_3CH_2CH_2CH_2CI$
	Structural Formula equation
	ų
	$\begin{array}{cccc} H H H O & H H H CI \\ I & I & I & I & I & I \\ H - C - C - C - C - H & \longrightarrow & H - C - C - C - H \\ I & I & I & I & I & I \\ H H H H & & H H H \end{array}$
Reaction 2	Product formed - The functional group in the product is carboxylic acid.
Butan-1-ol reacts with $Cr_2O_7^{2-}/$	butanoic acid
H ⁺	Reaction type – Reaction with acidified dichromate is oxidation as the
	alcohol is oxidised to a carboxylic acid.
	Condensed Structural Formula equation
	$CH_3CH_2CH_2CH_2OH \rightarrow CH_3CH_2COOH$
	Structural Formula equation
	Η.
	ннно ннно 1111 н + нн н-с-с-с-н → н-с-с-с-о-н 1111 н + нн
Reaction 3	Product formed - The functional group in the product is a (carbon-to-
	carbon) double bond / alkene. But-1-ene
Butan-1-ol reacts with	Reaction type - Reaction with concentrated H_2SO_4 is an elimination
concentrated H ₂ SO ₄	reaction. A hydrogen atom and the –OH group on (adjacent) carbon
	atoms are removed forming a (carbon-to-carbon) double bond.
	Condensed Structural Formula equation
	$CH_3CH_2CH_2CH_2OH \rightarrow CH_3CH_2CH=CH_2$
	Structural Formula equation
	Н
	ннно нн н
	$\begin{array}{ccccc} H & H & H & O & H & H & H \\ I & I & I & I & I & I & I \\ H - C - C - C - C - H & \longrightarrow & H - C - C - C = C - H \\ I & I & I & I & I & I \\ H & H & H & H & H & H \end{array}$
	нннн ннн

Writing Excellence answers to Alkene Reactions questions

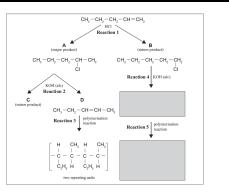
	Allena Deastions OUESTION	
Question: Ethone Cill reacts with	Alkene Reactions QUESTION	
Question: Ethene, $C_2H_{4(g)}$, reacts with aqueous potassium permanganate solution, KMnO _{4(aq)} , dilute acid, H ₂ O /		
H ⁺ , and hydrogen bromide, HBr.	of ethene gas with each of these three reagents.	
In your answer, you should:	or enterie gas with each of these three reagents.	
 describe any observations that can 	be made	
-	eaction ethene undergoes with each reagent	
 describe the functional group of th 		
	ictural formulae for the organic compounds for each reaction.	
include equations showing the stre	ANSWER	
Reaction 1	Observations - The purple KMnO4 turns colourless (or brown)	
Ethene, $C_2H_{4(q)}$ reacts with aqueous	Reaction type - This is an oxidation or addition reaction in which the	
potassium permanganate solution,	double bond is broken and two –OH groups attach to each C atom of the	
$KMnO_{4(aq)}$,	double bond is broken and two –on groups attach to each c atom of the	
	Functional group of products	
	Ethene reacts with aqueous KMnO ₄ to form a diol, ethan-1,2-diol.	
	· · · · · · · · · · · · · · · · · · ·	
	Structural Formula equation	
	$CH_{a} = CH_{a} \longrightarrow CH_{a} - CH_{a}$	
	Structural Formula equation $CH_2 = CH_2 \xrightarrow{KMnO_4} CH_2 - CH_2$ $I \qquad I \qquad I \qquad OH \qquad OH$	
	Observations - No colour changes are observed in this reaction.	
Reaction 2	(colourless to colourless)	
Ethene, C ₂ H _{4(g)} reacts with dilute	Reaction type -This is an addition reaction as once again the double bond	
acid, H₂O / H ⁺	is broken. However, in this reaction one –OH group and one –H atom	
	attach to each C atom of the double bond.	
	Functional group of products	
	Ethene reacts with dilute acid, H_2O / H^+ , to form ethanol.	
	Structural Formula equation	
	$CH_2 = CH_2 \xrightarrow{H_2O/H^+} CH_3 - CH_2 - OH$	
	$CH_2 - CH_2 \rightarrow CH_3 - CH_2 - OH$	
	Observations - Again there is no colour change observed. (colourless to	
Reaction 3	colourless)	
Ethene, $C_2H_{4(g)}$ reacts with	Reaction type - This reaction is an addition reaction, as the double bond is	
hydrogen bromide, HBr.	broken and two atoms are added to each C atom of the double bond. In	
	this reaction one H and one Br atom are added.	
	Functional group of products	
	When ethene reacts with hydrogen bromide, bromoethane is formed.	
	Structural Formula equation	
	$CH_2 = CH_2 \xrightarrow{HBr} CH_3 - CH_2 - Br$	
Summary of the three reactions	All three reactions involve the breaking of the double bond.	
	All three reactions involve addition (adding atoms on)	
	Two of these reactions are addition reactions and one is an oxidation	
	reaction.	
	Only one of the reactions gives a colour change that is easily observed.	

Writing Excellence answers to Major and Minor products questions

	Major and Minor Products QUESTIC	N	
Question: In Reaction 1, propan-2-			
In Reaction 2, propene can be conve			
Analyse BOTH of these reactions by:			
describing the reagents and	conditions needed for each reaction to	occur	
identifying each type of reac	tion and explaining your choice		
explaining why Reaction 1 fo	rms only a single organic product, but	Reaction 2 forms a mixture of	
organic products.			
	$CH = CH = CH = \frac{Reaction 1}{Reaction 1}$		
	$\begin{array}{c} CH_{3} - CH - CH_{3} & \xrightarrow{\text{Reaction 1}} \\ I & & & \\ OH & & & \\ \end{array} \xrightarrow{\text{Reaction 2}} & CH_{2} = CH - CH_{3} \end{array}$		
	OH Reaction 2 Propende		
	Propan-2-ol		
	ANSWER		
1. Reaction 1	Reagent and conditions -To convert	propan-2-ol to propene, add	
Propan – 2-ol forms propene	concentrated sulfuric acid (which is a	dehydrating agent).	
	Reaction type - It is an elimination re-		
	removed from adjacent carbon atom		
	form an alkene.		
	Structural Formula		
	H H I I H-C-C=C-H I I		
		1 H	
2. Reaction 2	Reagent type and conditions - To convert propene to propan-2-ol, add		
	dilute (sulfuric) acid.		
Propene forms propanol	Reaction type - This is an addition reaction because the double bond is		
	broken forming a C-C (single) bond, allowing H and OH from water to		
	bond to the C atoms that were double bonded together.		
Label each structure with name	Structural Formula		
and whether it is major or minor	н	н	
	н-с-с-с-н	Н−С́−С́−С́−Н	
	H-Ċ-Ċ-H I I I H H H	ннн	
	Product type: Major	Product type: Minor	
	Name: Propan-2-ol	Name: Propan-1-ol	
3. Explain why <u>reaction one</u> forms	Reaction 1 forms only one product be		
only one product linked to		affect the structure of the product as	
symmetry	propan-2-ol is symmetrical.		
4. State Markovnikov's rule AND	Reaction 2 produces two products because an asymmetric reagent (H-		
Explain the reason <u>reaction two</u>	OH) adds onto an asymmetric alkene ($CH_3CH=CH_2$). There are two		
produces two products linked to	carbons that the H or OH can bond with (C1 and C2), so there are two		
Markovnikov's rule and	possible combinations. We can predict which will be the major product by		
asymmetry, including which is	using <u>Markovnikov's rule</u> , which states that the carbon with the most		
major and which is minor.			
	will get another hydrogen while C2 w		
		t and propan-1-ol the minor product.	

Writing Excellence answers to Acid-Base Reactions questions

Acid-Base Reactions QUESTION Question: Question 3c: Compounds B (CH ₃ COOH) and E (CH ₃ CH ₂ NH ₂) react together. (i) Write a balanced equation for the reaction that occurs between compounds B and E. (ii) Identify the type of reaction that occurs between compounds B and E. Justify your answer.		
1. Draw the structural formula of the acid and base	ANSWER Acid (carboxylic acid)	Base (amine)
Identify which hydrogen ion will be donated in the acid (-COOH end) and which part of the base will accept the hydrogen ion (-NH ₂ end)	HO H-Ċ-Ć HO-H	$\begin{array}{cccc} H & H & H \\ & & \\ H - C - C - N - H \\ & \\ H & H \end{array}$
2. Write a balanced equation	$CH_3COOH_{(aq)} + CH_3CH_2NH_{2(aq)} \rightarrow CH_3$	$COO^{-}_{(aq)} + CH_3CH_2NH_3^{+}_{(aq)}$
		(64) - 5- 2 - 5 (64)
3. Name the type of reaction	The reaction between B and E is an a	cid-base (neutralisation) reaction.
4. Explain what occurs in the reaction generally	Acid-base reactions involve a proton	/ H ⁺ transfer.
5. Explain in detail what occurs in the acid – and the product formed	Protons / H ⁺ , are released from the c COOH, resulting in a salt forming cor	
5. Explain in detail what occurs in the base – and the product formed	The proton / H^+ is accepted by the ar forms a salt containing the $-NH_3^+$ gro	


Writing Excellence answers to Polymers questions

Polymers QUESTION

Question: Draw TWO repeating units of the polymer formed in Reaction. Explain why the formation of the polymer from its monomer is classified as an addition polymerisation reaction.

Compare and contrast the polymer formed in Reaction 5 to the polymer formed in Reaction 3.

In your answer you should explain why the polymers formed in these two reactions are different.

ANSWER		
 Identify the monomer, then draw the polymer (identify C 1 and C2 in monomer either side of the double bond then draw a chain of C (4 for 2 repeating units) and add on groups of each one removing double bond) 	monomer reaction 5 $CH_3-CH_2-CH_2+CH=CH_2$ reaction 3 $CH_3-CH_2-CH=CH-CH_3$	polymer C1 C2 C1 C2 H H H H -C -C -C -C -C -C $C_3H_7 H C_3H_7 H$
2. explain the definition of addition polymerisation	Since the monomer for this reaction is an alkene, when polymerisation occurs, the double bond in each alkene molecule is broken, freeing up a bonding space on each of the C atoms that was part of the double bond. This allows the monomers to join together by forming covalent bonds to make the polymer. Since double bonds in the alkene are being broken and molecules added into the freed up bonding spaces to make the monomer, this is an addition reaction. Polymerisation reactions occur when many monomers are chemically joined.	
3. molecule 1 (reaction 5) – describe the 2 groups of each end of the double bonded carbons		vill have a carbon with one hydrogen vith one hydrogen and an ethyl group, ble bond being on the C2 position.
 4. molecule 2 (reaction 3) – describe the 2 groups of each end of the double bonded carbons 5. Explain that molecule 1 and 2 are structural isomers but have the same molecular formula 	with 2 hydrogen atoms attached, an attached and a propyl group attache The molecular formulae of the two r	ave as its repeating unit a carbon atom and a carbon atom with one hydrogen

Writing Excellence answers to Identifying Unknowns questions

Identifying Unknowns QUESTION

Question: Question: 1c:

Four separate colourless organic liquids are known to be: • ethanol • ethanoic acid • hex-2-ene • 1-

aminohexane. Write a procedure to identify each of these organic liquids using only the reagents listed below.

• acidified dichromate solution, $Cr_2O_7^{2-}/H^+_{(aq)}$ • bromine water, $Br_{2(aq)}$ • sodium carbonate solution, $Na_2CO_{3(aq)}$. In your answer, you should:

• identify the test reagents used • describe any observations that would be made • identify the type of reaction that occurs • identify the organic product of any reaction.

You do not need to include equations in your answer.

	ANSWER
Step 1	Test reagents used – start with $Cr_2O_7^{2-}$ / H ⁺ adding a bit to each sample
	Observations - which will turn from orange to green with ethanol
	No change for the other 3 samples
	Type of reaction that occurs - oxidation
	Organic product of any reaction - ethanol is oxidised to ethanoic acid.
	Test reagents used - add sodium carbonate solution, Na ₂ CO _{3(aq).} to the
Step 2	remaining 3 samples
	Observations - Bubbles of gas will be produced in the ethanoic acid
	sample
	No change for the other 2 samples
	Type of reaction that accurs _ acid base reaction
	Type of reaction that occurs – acid-base reaction Organic product of any reaction – in the acid-base reaction Sodium
	ethanoate / ethanoate ion is formed.
	Test reagents used – add bromine water, $Br_{2(aq)}$ to the remaining 2
Step 3.	samples
	Observations - the bromine water, which turns from red / brown to
	colourless straightaway in the hex-2-ene sample
	No change for the other sample
	(for substitution in an alkane this reaction will be seen slowly with UV light
	as a catalyst)
	Type of reaction that occurs – addition reaction
	Organic product of any reaction – in the addition reaction It will form 2,3-
	dibromohexane is formed
Step 4.	Test reagents used - Hexan-1-amine will be the chemical left over that will
	not react with any of the given reagents.
	Observations (in other questions red litmus paper can be used – which will
	turn blue for an amine)
	Type of reaction that occurs
	Organic product of any reaction