Earth's Energy Budget ### **Junior Science** ## Earth's Energy Budget # Junior Science GZ Science #### 1. Add the values to the correct labels on the diagram | Contribution | Energy (Watts/m ²) | |---|--------------------------------| | TOTAL Incoming solar energy | 340 | | TOTAL Reflected Solar energy | 100 | | Solar energy absorbed by atmosphere | 79 | | Solar energy down to surface | 185 | | Solar energy reflected by surface | 24 | | Solar energy absorbed by surface | 161 | | Heat from Evaporation | 84 | | Sensible heat | 20 | | TOTAL Outgoing heat (thermal) energy | 239 | | Heat (Thermal) energy up from surface | 398 | | Heat (Thermal) energy down from surface | 342 | #### 2. Calculating Earth's Energy Budget | Total of all Solar (light) energy into Earth's atmosphere | Total of all outgoing solar (light)
energy from Earth's atmosphere | | |---|---|--| | | Total of all heat (thermal) energy
leaving Earth's atmosphere | | | TOTAL of all energy reaching Earth's atmosphere | TOTAL of all energy leaving Earth's surface | | | 3. | Difference in energy IN and energy OUTw/m² in the atmosphere | |----|---| | 4. | What effect will this difference have on Earth's overall energy, and therefore temperature? | | | | | | | | | | | a. | \ | | b. | Decrease of land ice from increasing warming, reducing light reflected by surface (Albedo effect) | | | | | | | | | | ## Earth's Energy Budget #### 1. Add the values to the correct labels on the diagram | Contribution | Energy (Watts/m ²) | |---|--------------------------------| | TOTAL Incoming solar energy | 340 | | TOTAL Reflected Solar energy | 100 | | Solar energy absorbed by atmosphere | 79 | | Solar energy down to surface | 185 | | Solar energy reflected by surface | 24 | | Solar energy absorbed by surface | 161 | | Heat from Evaporation | 84 | | Sensible heat | 20 | | TOTAL Outgoing heat (thermal) energy | 239 | | Heat (Thermal) energy up from surface | 398 | | Heat (Thermal) energy down from surface | 342 | #### 2. Calculating Earth's Energy Budget | Total of all Solar (light) energy down to Earth's surface | Total of all solar (light) energy reflected from Earth | | |---|--|--| | Total of all heat (thermal) energy to Earth's surface | Total of all heat (thermal) energy
leaving Earth | | | TOTAL of all energy reaching Earths surface | TOTAL of all energy leaving Earth's surface | | | 3. | 3. Difference in energy IN and energy OUTw/m² onto Earth's surface | | |----|---|-----| | 4. | 4. What effect will this difference have on Earth's overall energy, and therefore temperature | ?ذِ | | | | | | | | | | | | | | a. | 5. Discuss what might happen to the Earth's energy budget in these two following scenarions. a. Increase of Carbon dioxide emissions (Greenhouse gas) b. Decrease of land ice from increasing warming, reducing light reflected by surface (Albertal) | | | | | | | | | | | | | | #### 1. Calculating Earth's Energy Budget | Total of all Solar (light) energy into Earth's atmosphere | 340 | Total of all outgoing solar (light) energy from Earth's atmosphere | 100 | |---|-----|--|-----| | | | Total of all heat (thermal) energy leaving Earth's atmosphere | 239 | | TOTAL of all energy reaching Earth's atmosphere | 340 | TOTAL of all energy leaving Earth's surface | 339 | 2. Difference in energy IN and energy OUT 1 w/m² into Earth's atmosphere *Incoming solar TOA* (at the top of the atmosphere) = average solar radiation impinging on top of Earth's atmosphere Solar reflected TOA = solar radiation reflected by Earth's atmosphere Solar down surface = solar radiation hitting Earth's surface Solar absorption surface = solar radiation absorbed by Earth's surface Solar reflected surface = solar radiation reflected by Earth's surface Thermal up surface = heat radiated by Earth's surface to atmosphere Sensible heat = heat exchanged between Earth's surface and atmosphere due to convection Thermal outgoing TOA = heat radiated from Earth's atmosphere to space Greenhouse gas effect = back radiation to the surface from heat retained on Earth's surface by greenhouse gases (CO_2 , CH_4 , N_2O) Evaporation = heat conveyed from Earth's surface to atmosphere by evaporation of water 1. Calculating Earth's Energy Budget | Total of all Solar (light) energy down to Earth's surface | 185 | Total of all solar (light) energy reflected from Earth | 24 | |---|-----|--|-----| | Total of all heat (thermal) energy to Earth's surface | 342 | Total of all heat (thermal) energy
leaving Earth | 502 | | TOTAL of all energy reaching Earths surface | 527 | TOTAL of all energy leaving Earth's surface | 526 | 2. Difference in energy IN and energy OUT 1 w/m² into Earth's surface *Incoming solar TOA* (at the top of the atmosphere) = average solar radiation impinging on top of Earth's atmosphere Solar reflected TOA = solar radiation reflected by Earth's atmosphere Solar down surface = solar radiation hitting Earth's surface Solar absorption surface = solar radiation absorbed by Earth's surface Solar reflected surface = solar radiation reflected by Earth's surface Thermal up surface = heat radiated by Earth's surface to atmosphere Sensible heat = heat exchanged between Earth's surface and atmosphere due to convection Thermal outgoing TOA = heat radiated from Earth's atmosphere to space Greenhouse gas effect = back radiation to the surface from heat retained on Earth's surface by greenhouse gases (CO_2 , CH_4 , N_2O) Evaporation = heat conveyed from Earth's surface to atmosphere by evaporation of water