

Chemistry 3.6 AS 91392 Demonstrate understanding of equilibrium principles in aqueous systems

Writing Excellence answers to Common Ion Effect questions

Common Ion Effect QUESTION

Question: Show, by calculation, that a precipitate of lead(II) hydroxide, Pb(OH)₂, will form when 25.0 mL of a sodium hydroxide solution, NaOH, at pH 12.6 is added to 25.0 mL of a [Pb²⁺] = $0.5 \times 0.00421 = 2.105 \times 10^{-3}$ lead(II) nitrate, Pb(NO₃)₂, solution. $K_s(Pb(OH)_2) = 8.00 \times 10^{-17}$ at 25°C

ANSWER	
1. write the equation for the dissociation of salt	$Pb(OH)_2 \rightleftharpoons Pb^{2+} + 2OH^-$
2. Write the solubility product expression, <i>Q</i> , for the salt (K _s)	$Q = [Pb^{2+}][OH^{-}]^{2}$
3. calculate the solubility, s for the first	$[Pb^{2+}] = 0.00421 \times 0.0250$
ion after dilution	0.0500
$[Pb^{2+}] = \underline{c \times v}$	0.0300
total v	$[Pb^{2+}] = 2.105 \times 10^{-3} \text{ molL}^{-1}$
3sgfand units	
4. calculate the concentration of [OH-]	[OH-] = 10 -(14-pH)
from pH	$[OH^{-}] = 10^{-1.4}$
$[OH^-] = 10^{-(14-pH)}$	[OH] = 10 ⁻¹
3sgfand units	
5 . calculate the solubility, s for the	$[OH^{-}] = 0.00398 \times 0.0250$
second ion after dilution	0.0500
$[OH^-] = \underline{c \times v}$	$[OH^{-}] = 1.99 \times 10^{-2} \text{ mol}L^{-1}$
total v	
3sgfand units	
6. Calculate Q from expression	Q = [ion1] x [ion2] ²
C. Calculate & Hoth Copies	$Q = (2.105 \times 10^{-3}) \times (1.99 \times 10^{-2})^2$
$Q = [ion1] \times [ion2]^2$	
α [ion1] / [ion2]	$Q = 8.34 \times 10^{-7}$
3sgf (has no units)	
7. compare Q and Ks and state whether a	$K_s(Pb(OH)_2) = 8.00 \times 10^{-17} \text{ at } 25^{\circ}\text{C}$
precipitate will form or not	$Q = 8.34 \times 10^{-7}$
	Since $Q > K_s$, a precipitate of Pb(OH) ₂ will form.

NOTE: The white column is how your answer would appear on your test paper so make sure you **write out complete sentences**. The grey area is just to help you structure your answer and would not appear in the question.