Chemistry 3.6 AS 91392 Demonstrate understanding of equilibrium principles in aqueous systems ## Writing Excellence answers to Concentration of Species questions ## Concentration of Species QUESTION Question: Ethyl ammonium chloride, CH₃CH₂NH₃Cl, is a weak acid that will also react with water. List all the species present in a solution of CH₃CH₂NH₃Cl, in order of decreasing concentration. Do not include water. Justify the order you have given. Include equations, where necessary. | | ANSWER | |--|---| | 1. write the equation for the dissociation of salt | $CH_3CH_2NH_3CI \rightarrow CH_3CH_2NH_3^+ + CI^-$ | | | | | 2. link to complete dissociation AND formation of an (spectator) ion that does not react further so will be in greatest concentration | CH ₃ CH ₂ NH ₃ Cl completely dissociates so there will be none remaining. The chloride ion does not react further with water and so will be in the greatest concentration. | | 3. write the equation for the weak acid (formed from equation above) in water | $CH_3CH_2NH_3^+ + H_2O \iff CH_3CH_2NH_2 + H_3O^+$ | | 4. link to partial dissociation due to being a weak acid AND most will remain so will be next in concentration | The ethanamine ion (CH ₃ CH ₂ NH ₃ ⁺)will react further with water in an acid-base reaction, but only partially as it is a weak acid, leaving it the next in the series. | | 5. Explain H ₃ 0 ⁺ ions are formed during reaction in same quantity as conjugate PLUS small contribution from water AND so will be next in concentration | For every mole of $CH_3CH_2NH_3^+$ that reacts with water, 1 mole of $CH_3CH_2NH_2$ and H_3O^+ are formed.
However, H_3O^+ is slightly more concentrated than $CH_3CH_2NH_2$, as there is a small contribution from water $H_2O \leftrightharpoons H_3O^+ + OH^-$ | | 6. Explain conjugate base are formed during reaction in same quantity as H ₃ 0 ⁺ AND so will be next in concentration (but both H ₃ 0 ⁺ ions and conjugate will be at smaller concentration to acid as only weak acid) | Next in concentration is CH ₃ CH ₂ NH ₂ . Both CH ₃ CH ₂ NH ₃ ⁺ and H ₃ O ⁺ will be at lower concentration than CH ₃ CH ₂ NH ₃ ⁺ due to it being a weak acid | | 7. Finally Explain OH- ions present in small amounts from water dissociation only AND so will be last in concentration | OH ⁻ is present in the lowest concentration as this comes from the dissociation of water only. | | 8. list species in order | Cl ⁻ > CH ₃ NH ₃ ⁺ > H ₃ O ⁺ > CH ₃ NH ₂ > OH ⁻ | NOTE: The white column is how your answer would appear on your test paper so make sure you **write out complete sentences**. The grey area is just to help you structure your answer and would not appear in the question.