

Chemistry 2.6 AS 91166 Demonstrate understanding of chemical reactivity

Writing Excellence answers to Reaction Rates of Acids questions

Reaction Rates of Acids QUESTION

Question: The pH values of $0.100 \, \text{mol L}^{-1}$ solutions of two acids, HA and HB, are given in the table below.

- (i) Compare the relative strengths of the two acids, $HA_{(aq)}$ and $HB_{(aq)}$, using the information given above. Your answer should include equations and calculations.
- (ii) Predict and compare, with reasons, what would be observed when two 5 g samples of calcium carbonate chips, $CaCO_{3(s)}$, are reacted, separately, with excess HA and HB.

Solution	pН
$0.100 \text{ mol } L^{-1} \text{ HA}(aq)$	1.0
0.100 mol L ⁻¹ HB(aq)	2.2

	ANCMED	
ANSWER		
1. Write an equation for <u>HA</u>	$HA + H_2O \rightarrow A^- + H_3O^+$	
[Remembering H ₃ O ⁺ must be produced]		
2. Calculate H ₃ O ⁺ for HA	pH = 1.0	
[H ₃ O ⁺] = 10 ^{-pH}	$[H_3O^+] = 0.100 \text{mol}L^{-1}$	
[1130] = 10	[1130] = 0.100 more	
3. For HA link concentration of ions	HA is a strong acid since it fully dissociates, as shown by concentration of	
formed to level of dissociation AND	hydronium ions in HA solution – same as original concentration of HA	
compare to concentration of acid	(both $0.100 \mathrm{mol}\mathrm{L}^{-1}$).	
(are they the same?)		
4. Write an equation for HB	$HB + H_2O \rightleftharpoons B^- + H_3O^+$	
[Remembering H ₃ O ⁺ must be		
produced]		
5. Calculate H₃O⁺ for HB	pH = 2.2	
$[H_3O^+] = 10^{-pH}$	$[H_3O^+] = 0.00631 \text{mol}L^{-1}$	
6. For HB link concentration of ions	HB is a weak acid since it only partially dissociates; as shown by the	
formed to level of dissociation AND	concentration of hydronium ions in HB solution – concentration is only 0.00631	
compare to concentration of acid	mol L ^{−1} .	
(are they the same?)		
7. For HA link observation of reaction	Expect reaction to be more vigorous; rapidly produces gas / bubbles (CO ₂) –	
to concentration of ions	since the concentration of hydrogen ions is high,	
8. then For HA link collision	there will be more frequent collisions resulting in a faster rate of reaction.	
frequency to rate of reaction	there will be more frequent comsions resulting in a faster rate of reaction.	
requeries to rate or reaction		
9. For HB link observation of reaction	Expect a slower reaction, taking longer to produce the same volume of gas –	
to concentration of ions	since the concentration of hydrogen ions is low,	
	, 6	
10. then For HB link collision	there will be less frequent collisions resulting in a slower rate of reaction.	
frequency to rate of reaction	·	

NOTE: The white column is how your answer would appear on your test paper so make sure you **write out complete sentences**. The grey area is just to help you structure your answer and would not appear in the question.