Chemistry 3.6 AS 91392 Demonstrate understanding of equilibrium principles in aqueous systems ## Writing Excellence answers to **Solubility and Equilibrium** questions ## Solubility and Equilibrium QUESTION Question: The solubility of zinc hydroxide, $Zn(OH)_2$, can be altered by changes in pH. Some changes in pH may lead to the formation of complex ions, such as the zincate ion, $[Zn(OH)_4]^{2-}$ Use equilibrium principles to explain why the solubility of zinc hydroxide increases when the pH is less than 4 or greater than 10. | ANSWER | | |---|---| | 1. write the equation for the dissociation of salt | $Zn(OH)_{2(s)} \rightleftharpoons Zn^{2+}(aq) + 2OH^{-}(aq)$ | | 2. Explain that OH- ions are formed during dissociation | When $Zn(OH)_{2(s)}$ dissolves then $OH^{-}_{(aq)}$ ions are produced | | 3. write the equation for the reaction of H_3O^+ ions + OH^- ions when adding acid (due to pH being less than 4) | $H_3O^+ + OH^- \rightarrow H_2O$ | | 4 . link removal of OH ⁻ ions (product) to equilibrium shifting AND change in solubility | When the pH is less than 4 there are excess H_3O^+ ions present. These react with the OH^- ions to produce water and remove OH^- ions from the solution. so equilibrium shifts to the right to produce more $[OH^-]$, therefore more $Zn(OH)_2$ will dissolve, and increase solubility | | 5. write the equation for the formation of the complex ion [Zn(OH) ₄] ²⁻ with excess OH ⁻ ions (due to pH being greater than 10) | $Zn(OH)_2(s) + 2OH^- \rightarrow [Zn(OH)_4]^{2-} OR Zn^{2+} + 4OH^- \rightarrow [Zn(OH)_4]^{2-}$ | | 6. link removal of OH ⁻ ions (product) to equilibrium shifting AND change in solubility | When the pH is greater than 10 there are excess OH^- ions present. These react with the $Zn(OH)_2$ (Zn^{2+}) to produce a soluble complex ion, $[Zn(OH)_4]^{2-}$ and remove OH ions from the solution. so equilibrium shifts to the right to produce more $[OH^-]$, therefore more $Zn(OH)_2$ will dissolve, and increase solubility | NOTE: The white column is how your answer would appear on your test paper so make sure you **write out complete sentences**. The grey area is just to help you structure your answer and would not appear in the question.