Question: A titration was carried out by adding hydrobromic acid, HBr, to 20.0 mL of aqueous methylamine, CH₃NH₂, solution.

The equation for the reaction is: CH₃NH₂ + HBr → CH₃NH₃⁺ + Br⁻

Kₐ(CH₃NH₃⁺) = 2.29 × 10⁻¹¹

Kₜₐₜₜ = 1.00 × 10⁻¹⁴

The aqueous methylamine, CH₃NH₂, solution has a pH of 11.8 before any HBr is added. Show by calculation that the concentration of this solution is 0.0912 mol L⁻¹.

Answer

1. Determine if starting solution is acid or base (will it accept or donate H⁺) – strong or weak

 CH₃NH₂ is a weak base
 pH = 11.8
 Kₐ(CH₃NH₃⁺) = 2.29 × 10⁻¹¹

2. Calculate [H₃O⁺]
 [H₃O⁺] = 10⁻pH
 [H₃O⁺] = 10⁻¹¹.8
 [H₃O⁺] = 1.58 × 10⁻¹² mol L⁻¹

3. Write out Kₐ expression
 Kₐ = [base][H₃O⁺]
 [conj acid]
 Kₐ = [CH₃NH₃⁺][H₃O⁺]
 [CH₃NH₂⁺]

 And
 Kₐ = [CH₃NH₃⁺][H₃O⁺]
 [OH⁻]

4. Rearrange to calculate [CH₃NH₂]
 [CH₃NH₂] = Kₐ × Kₜₐₜₜ
 [H₃O⁺]²

 Assumptions: [base] = [H₃O⁺]
 [OH⁻] = Kₜₐₜₜ / [H₃O⁺]

 [CH₃NH₂] = 2.29 × 10⁻¹¹ × 1.00 × 10⁻¹⁴
 (1.58 × 10⁻¹² mol L⁻¹)²

 3sgf and units
 [CH₃NH₂] = 0.0912 mol L⁻¹

Note: The white column is how your answer would appear on your test paper so make sure you **write out complete sentences**. The grey area is just to help you structure your answer and would not appear in the question.