

Chemistry 3.6 AS 91392 Demonstrate understanding of equilibrium principles in aqueous systems

Writing Excellence answers to **Titration Curve – Equivalence Point pH** questions

Titration Curve – Equivalence Point pH QUESTION

Question: 20.00 mL of 0.320 mol L^{-1} ammonia, NH₃, is titrated with 0.640 mol L^{-1} hydrochloric acid, HCl. $pK_a(NH_4^+) = 9.24$

Show, by calculation, that the pH at the equivalence point (point C) is 4.96.

 $K_w = 1 \times 10^{-14}$

0 Volume of HCl added	
ANSWER	
1. determine if equivalence point is greater or less than 7 (from curve or strong base/weak acid strong acid/weak base And write down all available information	ammonia, NH $_3$ is weak base and hydrochloric acid, HCl is strong acid so equivalence point <7 v(NH $_3$) = 20.00 mL = 0.0200L c(NH $_3$) = 0.320 mol L $^{-1}$ c(HCl) = 0.640 mol L $^{-1}$ p K_a (NH $_4$ $^+$) = 9.24
2. Write down neutralisation equation	$NH_3 + HCI \rightarrow NH_4^+ + CI^-$
3. calculate $n(Base)$ to neutralise (and reach equivalence point and therefore $n(Acid)$ from 1:1 equation) $n = cv$ $also \ assume \ n(NH_3) = n(NH_4^+)$ $3sgf \ and \ units$	$n(NH_3) = cv$ $n(NH_3) = 0.320 \text{ mol } L^{-1} \times 0.0200L$ $n(NH_3) = 6.40 \times 10^{-3} \text{ mol}$
4. calculate v(Acid) to neutralise (n(NH ₃) = n(HCl) from 1:1 equation) v=n/c 3sgf and units	v=n/c v=6.40 x 10 ⁻³ mol / 0.640 mol L ⁻¹ v=0.0100L (10.0mL)
5. calculate [B ⁺] c = n/total v also assume $n(B) = n(B^+)$ see step 3. $B = NH_3 B + = NH_4^+$ total $v = \text{start volume base} + v \text{ acid added}$ 3sgf and units	c = n/total v $c = 6.40 \times 10^{-3} \text{ mol } /0.0300L$ $c = 0.213 \text{ molL}^{-1}$
6. calculate $[H_3O^+]$ $K_a = 10^{-pKa}$ $[H_3O^+] = \sqrt{Ka \times c(B^+)}$	$[H_3O^+] = \sqrt{Ka \times c(B^+)}$ $[H_3O^+] = \sqrt{10^{-9.24} \times 0.213 \text{ molL}^{-1}}$ $[H_3O^+] = 1.11 \times 10^{-5} \text{ molL}^{-1}$
3sgf and units B ⁺ = HA 7. Calculate pH pH = -log [H ₃ O ⁺] 3sgf Check pH against estimate on curve	pH = $-log [H_3O^+]$ pH = $-log [1.11 \times 10^{-5} molL^{-1}]$ pH = 4.96

NOTE: The white column is how your answer would appear on your test paper so make sure you **write out complete sentences**. The grey area is just to help you structure your answer and would not appear in the question.