

## Chemistry 3.6 AS 91392 Demonstrate understanding of equilibrium principles in aqueous systems

## Writing Excellence answers to **Titration Curve – Start pH** questions

## Titration Curve – Start pH QUESTION

Question: A titration was carried out by adding hydrobromic acid, HBr, to 20.0 mL of aqueous methylamine, CH<sub>3</sub>NH<sub>2</sub>, solution.

The equation for the reaction is:  $CH_3NH_2 + HBr \rightarrow CH_3NH_3 + + Br^-$ 

 $K_a(CH_3NH_3^+) = 2.29 \times 10^{-11}$ 

 $K_w = 1.00 \times 10^{-14}$ 

The aqueous methylamine,  $CH_3NH_2$ , solution has a pH of 11.8 before any HBr is added. Show by calculation that the concentration of this solution is 0.0912 mol  $L^{-1}$ .

|                                                                        | ANSWER                                                                                          |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1. determine if starting solution is acid or                           | CH <sub>3</sub> NH <sub>2</sub> is a weak base                                                  |
| base (will it accept or donate H <sup>+</sup> ) – strong               | pH = 11.8                                                                                       |
| or weak                                                                | $K_a(CH_3NH_3^+) = 2.29 \times 10^{-11}$                                                        |
|                                                                        |                                                                                                 |
|                                                                        |                                                                                                 |
|                                                                        |                                                                                                 |
| And write down all available information                               |                                                                                                 |
| 2. calculate [H <sub>3</sub> O <sup>+</sup> ]                          | $[H_3O^+] = 10^{-pH}$                                                                           |
| $[H_3O^+] = 10^{-pH}$                                                  | $[H_3O^+] = 10^{-11.8}$<br>$[H_3O^+] = 1.58 \times 10^{-12} \text{ molL}^{-1}$                  |
|                                                                        |                                                                                                 |
|                                                                        |                                                                                                 |
|                                                                        |                                                                                                 |
|                                                                        |                                                                                                 |
| 3sgfand units                                                          |                                                                                                 |
| 3. write out K <sub>a</sub> expression                                 | $K_a = \underline{[base][H_3O^+]}$                                                              |
| $K_a = [base][H_3O^+]$                                                 | [conj acid]                                                                                     |
| [conj acid]                                                            |                                                                                                 |
| A. Liber                                                               | $K_a = \underline{[CH_3NH_2][H_3O^+]}$                                                          |
| And then                                                               | [CH <sub>3</sub> NH <sub>3</sub> <sup>+</sup> ]                                                 |
| $K_a = [base][H_3O^+]$                                                 |                                                                                                 |
| [OH-]                                                                  | And                                                                                             |
| []                                                                     | $K_a = [CH_3NH_2][H_3O^+]$                                                                      |
|                                                                        | [OH <sup>-</sup> ]                                                                              |
|                                                                        |                                                                                                 |
| 4. rearrange to calculate [CH <sub>3</sub> NH <sub>2</sub> ]           | $[CH_3NH_2] = \underline{K_a \times K_w}$                                                       |
| $[CH_3NH_2] = \underline{K_a \times K_w}$                              | [H <sub>3</sub> O <sup>+</sup> ] <sup>2</sup>                                                   |
| [H <sub>3</sub> O <sup>+</sup> ] <sup>2</sup>                          | Assumptions: [hasa] - [LLOt]                                                                    |
|                                                                        | Assumptions: $[base] = [H_3O^+]$<br>$[OH] = K_w / [H_3O^+]$                                     |
|                                                                        | [OH] - K <sub>W</sub> / [H3O]                                                                   |
|                                                                        | $[CH_3NH_2] = 2.29 \times 10^{-11} \times 1.00 \times 10^{-14}$                                 |
| Assumptions: [base] = [H <sub>3</sub> O <sup>+</sup> ]                 | $\frac{(1.58 \times 10^{-12}  \text{molL}^{-1})^2}{(1.58 \times 10^{-12}  \text{molL}^{-1})^2}$ |
| $[OH^{\scriptscriptstyle{-}}] = K_w / [H_3 O^{\scriptscriptstyle{+}}]$ |                                                                                                 |
|                                                                        |                                                                                                 |
| 3sgfand units                                                          | $[CH_3NH_2] = 0.0912 \text{ mol L}^{-1}$                                                        |
|                                                                        |                                                                                                 |

NOTE: The white column is how your answer would appear on your test paper so make sure you **write out complete sentences**. The grey area is just to help you structure your answer and would not appear in the question.