ANSWERS Formula revision Part 1

Success Criteria: We know we have achieved this when we can:

- Construct a Formula equation for Motion, Force and Pressure
- Be able to give the names and units used in each Formula
- Be able to solve a simple question using each Formula

Remember to answer questions:

1. Write down formula
2. Rearrange formula if needed
3. Show working
4. Give answer with units
5. Calculating speed (velocity) - Fill in triangle and give names and units for each Letter

Letter	Name	Units
\mathbf{v}	Velocity / speed	$\mathrm{m} \mathrm{s}^{-1}$
d	distance	m
t	time	s

$$
v=\Delta d / \Delta \dagger
$$

Sample Question: A cyclist rides at a speed of $\mathbf{2 0} \mathbf{~ m s}^{-1}$ for $\mathbf{3 0}$ seconds. Calculate the distance she travels.
$d=v x \dagger$
$\mathrm{d}=20 \mathrm{~ms}^{-1} \times 30 \mathrm{~s}$
$d=600 \mathrm{~m}$
2. Calculating acceleration - Fill in triangle and give names and units for each Letter

Letter	Name	Units
a	acceleration	ms^{-2}
v	velocity	ms^{-1}
\mathbf{t}	time	s

$\mathrm{a}=\Delta \mathrm{v} / \Delta \dagger$

Sample Question: A car accelerates from $\mathbf{5} \mathbf{~ m s}^{-1}$ and reaches a speed of $\mathbf{2 0} \mathbf{~ m s}^{-1}$
If the car takes $12 \mathbf{s}$ to reach this speed, calculate the acceleration of the car.
$\mathbf{a}=\Delta \mathbf{v} / \Delta t$
$\Delta v=20 \mathrm{~ms}^{-1}-5 \mathrm{~ms}^{-1}=15 \mathrm{~ms}^{-1}$
$\mathrm{a}=15 \mathrm{~ms}^{-1} / 12 \mathrm{~s}$
$\mathrm{a}=1.25 \mathrm{~ms}^{-2}$
3. Calculating Force (general) - Fill in triangle and give names and units for each Letter

Letter	Name	Units
F	Force	N
m	mass	kg
a	acceleration	ms^{-2}

$\mathrm{F}_{\mathrm{net}}=\mathrm{ma}$

Sample Question: A car broke down and needs to be pushed. Three people pushed the car with a force of $\mathbf{4 5 0} \mathbf{N}$. Friction can be ignored. If the car with the driver inside it had a mass of $\mathbf{9 0 0} \mathbf{~ k g}$, calculate the car's acceleration.
$\mathrm{a}=\mathrm{F} / \mathrm{m}$
$a=450 \mathrm{~N} / 900 \mathrm{~kg}$
$\mathrm{a}=0.5 \mathrm{~ms}^{-2}$

Remember to convert mass to weight:
F (weight) = Mass x Gravity
Acceleration due to gravity $=10 \mathrm{~ms}^{-2}$
4. Calculating pressure - Fill in triangle and give names and units for each Letter

Letter	Name	Units
P	Pressure	Nm^{-2} or Pa
F	Force	N
A	Area	m^{2}

Sample Question: A 70 kg snowboarder stands uses a snowboard which has a mass of 2.5 $\mathbf{k g}$. The snowboard has a surface area in contact with the snow of $\mathbf{0 . 6 0} \mathbf{m}^{\mathbf{2}}$. Calculate the pressure on the snow.
$\mathrm{P}=\mathrm{F} / \mathrm{A}$
Mass $=70 \mathrm{~kg}+2.5 \mathrm{~kg}=72.5 \mathrm{~kg}$
$F_{\text {weight }}=72.5 \times 10=725 \mathrm{~N}$
$\mathrm{P}=725 \mathrm{~N} / 0.60 \mathrm{~m}^{2}$

Remember:
 To convert cm^{2} to m^{2}
 Divide by 10,000

$P=1208.3 \mathrm{Nm}^{2}$

