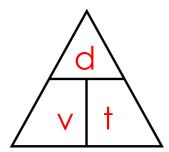


Mechanics 1.1 AS 90940 Mechanics

ANSWERS Formula revision Part 1


Success Criteria: We know we have achieved this when we can:

- o Construct a Formula equation for Motion, Force and Pressure
- Be able to give the names and units used in each Formula
- Be able to solve a simple question using each Formula

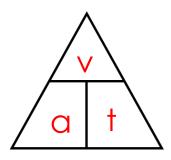
Remember to answer questions:

- 1. Write down formula
- 2. Rearrange formula if needed
- 3. Show working
- 4. Give answer with units

$oldsymbol{1}$. Calculating $oldsymbol{speed}$ ($oldsymbol{velocity}$) - Fill in triangle and give names and units for each Letter

Letter	Name	Units
V	Velocity / speed	m s ⁻¹
d	distance	m
t	time	S

 $v = \Delta d/\Delta t$


<u>Sample Question:</u> A cyclist rides at a speed of **20 ms-1** for **30 seconds**. Calculate the **distance** she travels.

d = v x t

 $d = 20 \text{ ms}^{-1} \times 30 \text{ s}$

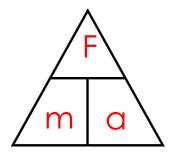
d = 600 m

2. Calculating acceleration - Fill in triangle and give names and units for each Letter

Letter	Name	Units
а	acceleration	ms ⁻²
V	velocity	ms-1
t	time	S

 $a = \Delta v / \Delta t$

<u>Sample Question:</u> A car accelerates from **5 ms⁻¹** and reaches a speed of **20 ms⁻¹** If the car takes **12 s** to reach this speed, calculate the **acceleration** of the car.


$$a = \Delta v / \Delta t$$

 $\Delta v = 20 \text{ ms}^{-1} - 5 \text{ ms}^{-1} = 15 \text{ ms}^{-1}$

 $a = 15 \text{ ms}^{-1} / 12 \text{ s}$

 $a = 1.25 \text{ ms}^{-2}$

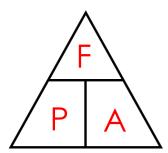
3. Calculating Force (general) - Fill in triangle and give names and units for each Letter

Letter	Name	Units
F	Force	N
m	mass	kg
а	acceleration	ms ⁻²

 $F_{net} = ma$

<u>Sample Question:</u> A car broke down and needs to be pushed. Three people pushed the car with a force of **450 N.** Friction can be ignored. If the car with the driver inside it had a mass of **900 kg**, calculate the car's **acceleration.**

a = F / m


a = 450 N / 900 kg

 $a = 0.5 \text{ ms}^{-2}$

Remember to convert mass to weight:

F (weight) = Mass x Gravity Acceleration due to gravity = 10ms⁻²

4. Calculating pressure - Fill in triangle and give names and units for each Letter

Letter	Name	Units
Р	Pressure	Nm ⁻² or Pa
F	Force	N
Α	Area	m ²

P= F / A

<u>Sample Question:</u> A **70 kg** snowboarder stands uses a snowboard which has a mass of **2.5 kg.** The snowboard has a surface area in contact with the snow of **0.60 m².** Calculate the pressure on the snow.

P = F / A

Mass = 70 kg + 2.5 kg = 72.5 kg

 $F_{weight} = 72.5 \times 10 = 725 N$

 $P = 725 N / 0.60 m^2$

 $P = 1208.3 \text{ Nm}^2$

Remember:

To convert cm² to m²

Divide by 10,000

