ANSWERS Formula revision Part 2

Success Criteria: We know we have achieved this when we can:

- Construct a Formula equation for Work, Power and Energy
- Be able to give the names and units used in each Formula
- Be able to solve a simple question using each Formula

Remember to answer questions:

1. Write down formula
2. Rearrange formula if needed
3. Show working
4. Give answer with units
5. Calculating work - Fill in triangle and give names and units for each Letter

Letter	Name	Units
W	Work	J
F	Force	N
\mathbf{d}	distance	m

Sample Question: A motorbike of mass $\mathbf{1 5 0} \mathbf{~ k g}$ is lifted $\mathbf{2 ~ m}$ onto a display stand.
What is the work done to lift the motorbike onto the display stand?
$F_{w}=150 \mathrm{~kg} \times 10=1500 \mathrm{~N}$
$W=F d$
$W=1500 \mathrm{~N} \times 2 \mathrm{~m} \quad \mathrm{~W}=3000 \mathrm{~J}$
2. Calculating power - Fill in triangle and give names and units for each Letter

Letter	Name	Units
P	Power	W
W	Work	J
t	time	s

1. Sample Question: A crane lifts $\mathbf{8 0 0} \mathbf{~ k g}$ of concrete a height of $\mathbf{2 5} \mathbf{m}$ in $\mathbf{2 0} \mathbf{~ s}$.

Calculate the power needed by the crane to lift the concrete.
Fw $=800 \mathrm{~kg} \times 10=8000 \mathrm{~N}$
$W=F d$
$\mathrm{W}=8000 \mathrm{~N} \times 25 \mathrm{~m}=200,000 \mathrm{~J}$
$P=W / \dagger \quad=200,000 / 20 \quad P=10,000$
3. Calculating (gravitational) potential Energy - Fill in triangle and give names and units for each Letter

Letter	Name	Units
E_{p}	Potential energy	J
m	mass	kg
g	Acceleration due to Gravity (10)	ms^{-2}
h	height	m

Sample Question: A dog, mass $\mathbf{4 5} \mathbf{~ k g}$, jumps off a bridge into the water below. The bridge is $\mathbf{1 . 5}$ \mathbf{m} above the water. Calculate the gravitational potential energy the girl loses when she hits the water.
$E_{p}=m g h$
$\mathrm{E}_{\mathrm{p}}=45 \mathrm{~kg} \times 10 \times 1.5 \mathrm{~m}$
$E_{p}=675 \mathrm{~J}$

Remember to convert mass to weight:

F (weight) $=$ Mass \times Gravity
Acceleration due to gravity $=10 \mathrm{~ms}^{-2}$
4. Calculating kinetic energy - Fill in triangle and give names and units for each Letter

Letter	Name	Units
E_{k}	Kinetic energy	J
m	mass	kg
V^{2}	Velocity squared	ms^{-1}

$$
E_{k}=1 / 2 m v^{2}
$$

Sample Question: The world record for a men's team sprint of 1000 m sprint is an average speed of $\mathbf{2 3 . 9} \mathbf{~ m s}^{\mathbf{- 1}}$. If the mass of a rider was $\mathbf{7 0} \mathbf{~ k g + 7 \mathbf { ~ k g }}$ for his bike, calculate the riders kinetic energy output when he crossed the line.
$\mathrm{m}=70 \mathrm{~kg}+7 \mathrm{~kg}=77 \mathrm{~kg}$
$E k=1 / 2 m v^{2}$
$E k=1 / 277 \mathrm{~kg} \times(23.9)^{2}$

Remember to add mass together
$\mathrm{Ek}=38.5 \times 571.2$
Ek $=21,991.6 \mathrm{~J}$

