

ANSWERS Formula revision Part 2

Success Criteria: We know we have achieved this when we can:

- Construct a Formula equation for Work, Power and Energy
- Be able to give the names and units used in each Formula
- Be able to solve a simple question using each Formula

Remember to answer questions:

- 1. Write down formula
- 2. Rearrange formula if needed
 - 3. Show working
- 4. Give answer with units

1. Calculating **work** - Fill in triangle and give names and units for each Letter

Letter	Name	Units
W	Work	J
F	Force	Ν
d	distance	m

Sample Question: A motorbike of mass 150 kg is lifted 2 m onto a display stand.

What is the work done to lift the motorbike onto the display stand?

$$F_w = 150 \text{ kg} \times 10 = 1500 \text{ N}$$

W = Fd

 $W = 1500 N \times 2 m$

W = 3000 J

2. Calculating **power** - Fill in triangle and give names and units for each Letter

	~
Р	t

Letter	Name	Units
Р	Power	W
W	Work	J
t	time	S

P = W/t

W = Fd

1. Sample Question: A crane lifts 800 kg of concrete a height of 25 m in 20 s.

Calculate the power needed by the crane to lift the concrete.

 $Fw = 800kg \times 10 = 8000N$ W = Fd W = 8000 N × 25 m = 200,000 J P = W/t = 200,000 / 20 P = 10,000 **3.** Calculating (gravitational) **potential Energy** - Fill in triangle and give names and units for each Letter

Letter	Name	Units
Ep	Potential energy	J
m	mass	kg
g	Acceleration due to Gravity (10)	ms ⁻²
h	height	m

<u>Sample Question</u>: A dog, mass **45 kg**, jumps off a bridge into the water below. The bridge is **1.5 m** above the water. Calculate the **gravitational potential energy** the girl loses when she hits the water.

E_p = mgh

E_p = 45 kg x 10 x 1.5 m

 $E_{p} = 675 \text{ J}$

'∕₂ m

Remember to convert mass to weight: F (weight) = Mass x Gravity Acceleration due to gravity = 10ms⁻²

4. Calculating kinetic energy - Fill in triangle and give names and units for each Letter

	Letter	Name	Units
`	E _k	Kinetic energy	J
1	m	mass	kg
2	V ²	Velocity squared	ms⁻¹

 $E_k = \frac{1}{2} mv^2$

 $E_{p} = mgh$

<u>Sample Question</u>: The world record for a men's team sprint of 1000 m sprint is an average speed of **23.9 ms**⁻¹. If the mass of a rider was **70 kg + 7 kg** for his bike, calculate the riders **kinetic energy** output when he crossed the line.

m = 70 kg + 7 kg = 77kg $Ek = \frac{1}{2}$ m v² $Ek = \frac{1}{2}$ 77 kg x (23.9)² $Ek = 38.5 \times 571.2$ Ek = 21,991.6 J

Remember to add mass together

