Name	Symbol	Name	Symbol	Name	Symbol	Name	Symbol
hydrogen	Н	oxygen	0	phosphorus	Р	silver	Ag
helium	He	fluorine	F	sulfur	S	lead	Pb
lithium	Li	neon	Ne	chlorine	Cl	zinc	Zn
beryllium	Ве	sodium	Na	argon	Ar	copper	Cu
boron	В	magnesium	Mg	potassium	К	bromine	Br
carbon	С	aluminium	Al	calcium	Ca	iodine	ı
nitrogen	N	silicon	Si	gold	Au	iron	Fe

Use of Metals linked to Physical property

Property involved Metal copper Pipes. Excellent electrical conductor Wires. Good thermal (heat) conductor cooking pots aluminium Aircraft frames Strong and light Good conductor and ductile Gold (and Jewellery Colour, malleable and ductile silver) lead Roof flashing Very malleable

Car bodies

Structural steel

Malleable

Good heat conductor

Properties of Gases, Liquids and Solids						
gas	liquid	solid				
takes the shape and volume of its container particles can move past one another	takes the shape of the part of the container which it occupies particles can move/slide past one another	retains a fixed volume and shape rigid - particles locked into place				
Spreads to fill container particles have weak bonding so they spread by moving rapidly apart from each other	Does not spread to fill a container particles remain bonded to each other closely and only move past each other but do not spread	Does not spread to fill a container particles are bonded to each other closely and stay fixed in place so do not spread				
compressible lots of free space between particles	not easily compressible little free space between particles	not easily compressible little free space between particles				
flows easily particles can move past one another	flows easily particles can move/slide past one another	does not flow easily rigid - particles cannot move/slide past one another				
Not dense	Dense	Dense				
Particles have large spaces	Particles move past each other	Particles are closely packed to				
between them	but still remain close	each other				

Matter has different properties in different states

All matter is found in three States

Matter can have physical and chemical changes

Evidence of Chemical Changes | Examples of Physical Changes ■ Burning wood – crumpling a sheet of paper temperature change melting an ice cube Mixing acid with universal breaking a bottle indicator - colour change No change in temperature, Seeing bubbles when colour, gas or smell vinegar and baking soda are mixed - a gas is formed ■ Burning sulphur – creates a new smell

Chemical changes create new products

Melting and boiling points of water

Different substances have different melting and boiling points

Separation technique	Property used for separation	example		
Magnetic Attraction	magnestism	magnetic iron can be separated from non-magnetic sulfur using a magnet		
Decanting	density or solubility	liquid water can be poured off (decanted) insoluble sand sediment less dense oil can be poured off (decanted) more dense water		
Filtration	solubility, size of particles	sand can be separated from a solution of sodium chloride in water by filtration		
Evaporation	solubility and boiling point	soluble sodium chloride can be separated from water by evaporation		
dissolving	solubility	soluble salt can be separated from sand by dissolving into a solvent		
Distillation boiling point		ethanol can be separated from water by distillation because ethanol has a lower boiling point than water		

Mixtures can be separated physically

Graphs are used to show patterns in data more easily than a data table. Often processed (averaged) data is used.

A well drawn line graph must have the following features:

- ☐ A suitable heading
- Evenly spaced numbered axes
- Labels with units
- ☐ Correctly plotted line.

Use the acronym SALT when plotting graphs:
Scales Axes Labelling Title

G

Drawing a line Graph

Scientific investigations are typically written up in a standard way under the following headings:

Aim (focus question): what you are trying to find out or prove by doing the investigation Hypothesis: what you think will occur when an investigation is carried out Equipment (or materials): the things that you need to do the investigation

Method: A simple, clear statement of what you will do - and can be repeated by another person

Results: data, tables and graphs collected from investigation

Conclusion: what your results tell you — linked back to the aim and hypothesis **Discussion**: Science ideas to explain your results, possible improvements to the investigation, how you managed to control the other variables.

Science Investigations

Chromatography separates ink mixtures

Distillation separates liquids by boiling point

Mixtures can be **separated**.

Solutions are mixtures

Examples of solutions

Matter and Mixtures

last minute study sheet

Ideas for last minute study sheet

- 1. **10 questions.** Working in pairs. Each student uses the sheet to write 10 questions that could be answered with information on the sheet. The other student could have a different topic sheet. Focus on the students creating specific questions rather than "what is an acid", ask "what colour would acid turn blue Litmus paper". Swap over the question sheets for the other partner to answer (without the sheet). Once finished, use the sheet to check answers. For any answers that are incorrect, use the sheet to correct them.
- 2. Concept maps. Students use the information on the sheet to create a large concept map.
- 3. **Scaffolded Practice Tests.** Create a short test, either paper or online (i.e. Kahoot, FORMS, Education Perfect), where the students are able to use the sheet to help. Repeat the test (or an alternative) the next day, without the information sheet.
- 4. Sticky Notes. Write summary statements, using information on the sheet, on small post it notes (digital or paper) and find the area of their notes to place it on.