Molecular Solids Non-metals forming molecules l, HCI

Particles: molecules Bonding: weak intermolecular

Molecules are held together by weak intermolecular bonding. Within the Molecules, the atoms are held together by strong covalent bonds.

Melting point

Low

Conductivity

no

No-solid

Yes-liquid or aqueous

Elements that are metals Αl Fe Particles: atoms Bonding: metallic

Metal atoms are held together in a 3—D lattice by non-

directional metallic bonding in which valence electrons are attracted to the nuclei of neighbouring atoms. **Conductivity Melting point** Solubility **Hardness**

Metallic Solids

Cu

Yes but malleable

SiO₂

Hard – diamond

Soft -graphite

Ionic Solids

Non-metals and metals together forming a ionic compound CuSO₄

Solubility

No — non-polar

Yes - polar

Hardness

soft

NaCl

Particles: ions Bonding: electrostatic / ionic lons held together by strong directional electrostatic forces (ionic bonding) between +ve (cations) and –ve (anions)

Covalent Network Solids Carbon and silicon dioxide

no

no

C - graphite C - diamond

high

yes

Yes - Graphite

No - Diamond/SiO₂

Particles: atoms Bonding: covalent

Diamond and SiO₂ are 3-dimensional covalent network structures where atoms are held together by strong covalent bonds in all planes. **Graphite** is a covalent network structure that is in 2 dimensional sheets. Between the layers are free

ions in a 3-dimensional lattice **Melting point Conductivity**

Very high

Solubility	Hardness
yes	Hard but brittle

_	moving valenc	ing valence electrons				
	Conductivity	Melting point	Solubility	Hardnes		

Very high