The different types of motion

Objects that move from one point of space to another over time are said to have motion. Examples include a tortoise slowly moving across the ground or a bullet moving fast after it has been fired from a gun. Objects that remain at the same point of space over time are called stationary. Examples include a person sitting still on a chair or a parked car.

Measuring Motion in Science

Quantity	Unit	Symbol	Equipment used
Distance	Kilometre	km	odometer
	Metre	m	Metre ruler
	millimetre	mm	Hand ruler
	Hour	hr	clock
	minute	min	watch
	second	s	Stop watch

Converting measurements

Quantities are often measured in different scales depending upon what is most appropriate for the original size. In Science (and Mathematics) we use common prefixes to indicate the scale used.

We sometimes want to convert scales from one to another to compare data or to place the measurements into equations.

To convert from metres to kilometres divide by 1000
To convert from kilometres to metres multiply by 1000

Time is measured in "imperial units" 1 hour has 60 minutes and 1 minute has 60 seconds therefore 1 hour has 3600 seconds
Prefix $=$ Scale
Kilo $=1000$
Centi $=1 / 100^{\text {th }}$
Milli $=1 / 1000^{\text {th }}$
So 1 kilometre $=1000$ metres
1 metre contains 100 centimetres
1 metre contains 1000 millimetres

NOTE: to convert speed

ms^{-1} to kmhr^{-1} multiply by 3.6
kmhr^{-1} to ms^{-1} divide by 3.6

Speed is a measure of the distance travelled over the time taken. The more distance covered by an object during a given time, the faster the speed it is moving. In this unit we use the term velocity to mean the same thing.

Constant speed occurs when the object travels the same amount of distance at each even time period. When we travel on an object moving at a constant speed, we do not feel movement for example travelling in an airplane. Only when we observe other objects moving at a different speed to us do we notice that we are moving.

Calculating speed

We use this formula to calculate speed by placing in the information we have about distance /time into it. We can also rearrange the formula to calculate distance or time, if we know the other two values. It is important to also use the units after any value in Science.

$$
\begin{aligned}
& v=\text { velocity }\left(\mathrm{ms}^{-1}\right) \\
& d=\operatorname{distance}(m) \\
& t=\text { time }(\mathrm{s})
\end{aligned}
$$

$\mathrm{v}=\mathrm{d} / \mathrm{t}$

The relationships between distance, time and speed

Triangles can be used to calculate speed, distance or time.
Cover the part of the triangle you wish to calculate and multiply or divide the remaining two values.

The unit for speed depends upon the units for time and distance but the most common unit in the lab is metres per second (ms ${ }^{-1}$)

This formula will be given with all assessments (but not what the letters stand for or the units) and you will need to learn where to apply it.

A football is kicked and during the first 2 s it travels 36 m . What average speed in ms^{-1} is it going during this time?

$$
\begin{aligned}
& v=d / t \\
& v=36 \mathrm{~m} / 2 \mathrm{~s} \\
& v=18 \mathrm{~ms}^{-1}
\end{aligned}
$$

A car travels from Cambridge to Hamilton in 15 minutes. The distance is 22.8 km . What average speed was the car traveling in kmhr^{-1} ?

$$
\begin{aligned}
& 15 \text { minutes } / 60 \mathrm{mins}=0.25 \mathrm{hr} \\
& v=\mathrm{d} / \mathrm{t} \\
& v=22.8 \mathrm{~km} / 0.25 \mathrm{hr} \\
& v=91.2 \mathrm{kmhr}^{-1}
\end{aligned}
$$

Average speed and instantaneous speed

We calculate average speed (velocity). That is the speed that has been travelled on average over the entire distance. In a car the odometer measures instantaneous speed. This is the speed that the car is travelling at in that moment.

The average speed a car may have been travelling at for a journey from Cambridge to Hamilton may have been 70 km per hour but at sometimes they may have been travelling at 100 km per hour and at other times they may have been travelling at 45 km per hour.

We use the symbol Δ to mean "change in", so using the formula we calculate the average velocity by dividing the change in distance by the change in time taken.

Distance (y-axis) and time (x axis) data can be plotted on a graph to show patterns and compare speeds. The steeper line on the right shows student A has a faster speed than student B.

A straight diagonal line indicates constant speed. A straight horizontal line indicates the object is stationary.

Distance verses Time graph

Interpreting Distance/time graphs
Distance verses Time graph

TIME

A distance time graph can also show acceleration with a curved line (blue) because at each time interval the distance travelled becomes larger and larger.

Changes in speed are also shown with a combination of diagonal and horizontal lines (red).

Distance / time graph - Describing motion

Q1: The cyclist's journey was plotted on the distance / time graph below. Describe the motion of the cyclist in each of sections A, B, C and D
Section A: Increasing speed / accelerating
Section B: Constant speed
Section C: Decreasing speed, decelerating
Section D: Stopped / stationary

Q2: Calculate the cyclists speed during section B.
$v=d / t$
$=10 / 5$
$=2 \mathrm{~ms}^{-1}$
Q3: what is the total distance
covered from 5 to
15seconds?
19m-5m
$=14 \mathrm{~m}$ in distance covered

Gradients can be calculated from a Distance-time graph - EXTENSION

The gradient of a distance - time graph can be used to calculate speed (velocity). The co-ordinates of a straight line in the graph are taken (for example from A to B) by projecting back to the x and y axis.

Distance verses Time graph

To calculate the value for time, find the difference between t1 and t2 by subtracting the smallest value from the largest value. This will be your Δ time.

Repeat to find distance on the y axis. This will be your Δ distance.

Place both values into your formula to calculate speed (velocity)
$v=\Delta d / \Delta t$

1. Units of distance, time and speed can use different scales. Calculate the missing values

$$
1 \mathrm{hr}=60 \mathrm{mins} \quad 1 \mathrm{~min}=60 \mathrm{~s}
$$

Time		
Seconds (s)	Minutes (min)	Hours (hr)
120		
	45	2.5
	240	

Millimetres (mm)	Metres (m)	Kilometres (km)
	10.8	
3124		0.84
	33	

ms^{-1} to kmhr^{-1} multiply by 3.6 kmhr^{-1} to ms^{-1} divide by 3.6

Speed	
ms^{-1}	kmhr^{-1}
	1.4
1576	27
	103

2. Look at the following situations and calculate the missing values. Remember that $\mathrm{v}=\mathrm{d} / \mathrm{t}$

| a. A bus trip took 150 mins and during that time |
| :--- | :--- | :--- |
| 170km was travelled. What was the average speed the |
| bus travelled during that trip in both kmhr^{-1} and ms^{-1} ? | | b. A cat travelled 2.5 km in one night and had an |
| :--- |
| average speed of $0.6 \mathrm{kmhr}^{-1}$. What time did it take |
| for the cat to travel this distance? |

3. In your own words, define average speed and instantaneous speed.

Average speed	Instantaneous speed

133 | P a g e GZ Science Resources
4. On the distance-time graph below add labels to identify the following features:

Slow constant speed, faster constant speed, acceleration, stationary

5. Use the following graph to answer the questions below.

d. Calculate the average speed travelled from point A to B
e. Compare the speeds of $A-B$ and $C-D-u s i n g$ both the calculations and the slope of the graph

