Summary Revision - Reaction Rate What needs to occur for a collision to be successful? □ Collide in the correct orientation Factor (increased) Does it increase frequency of collisions Does it increase the % of successful collisions? 1. Concentration More particles in a given area, therefore But more successful collisions (per unit time) more chance of colliding - as more frequent collisions 2. Surface Area More particles in a given area, therefore But more successful collisions(per unit time) more chance of colliding - as more frequent collisions 3. Temperature Particles have more kinetic energy – move More particles have required energy to faster therefore more chance of colliding overcome activation energy therefore result in successful collision 4. Catalyst No A lower activation energy pathway available - "lowers the bar' and a greater proportion of collisions become successful. So catalysts also assist orientation

Link answers to increase / decrease in reaction rate

Analysing the K_c value

A K_c value of 1 means reactants = products at equilibrium.

Some questions will ask you to calculate a value (Q) using the equilibrium constant and provided concentrations []

You then need to compare this value to K_c (at a particular temperature). Use the scale above to compare positions of Q to K_c to see if that value indicates the reaction is at equilibrium (they are the same) or more reactants/products

Le Chatelier's Principle

When a change is applied to a system at equilibrium, the system responds so that the effects of the change are minimised

that the en	ects of the change are mir	iirnisea
Change in conditions		Direction of change in equilibrium position
Concentration - increase products		In the reverse direction
	- decrease products	In the forward direction
	- increase reactants	In the forward direction
	- decrease reactants	In the reverse direction
Pressure	Increase	In the direction with the least no. of moles of gas
	Decrease	In the direction with the greater no. of moles of gas
Temperature	Increase	In the direction of the endothermic reaction
	Decrease	In the direction of the exothermic reaction
Catalyst added		No change in equilibrium position or in K _c Equilibrium is reached more quickly (ie reaction rate changes)

