Organic Chemistry AS 91391

Summary Notes

1. Functional groups – Naming and properties: Alkanes, alkenes, haloalkanes (primary, secondary, tertiary), alcohol, amines, carboxylic acids, Aldehydes, ketones, acids chlorides, amides and esters

Alkanes

- 1. identify the longest C chain
- 2. Identify any branches
- 3. Number the C atoms in longest chain so branches are on the lowest numbers
- 4. Location of branch
- 5. Name of branch
- 6. Prefix of long chain
- 7. -ane

Non-polar with ID-ID bonding only and insoluble.

Alkenes

- 1. Location of branch
- 2. Name of branch
- 3. Prefix of long chain
- 4. Location of C=C
- 5. -ene
- 6. If in an alkene there are more than one double bond is present, it named as a –diene or –triene.

Also Non-polar with ID-ID bonding only and insoluble. BP and MP increase with chain length

Haloalkanes

Halogen named as a branch

Bromine - bromo

Chlorine – chloro

Fluorine – fluro

Iodine-iodo

primary (1°) – bonded to a C that is bonded to only 1 other C secondary (2°) – bonded to a C that is bonded to 2 other C tertiary (3°) – bonded to a C that is bonded to 3 other C Polar with only slight solubility

Alcohols

- 1. Location of branch
- 2. Name of branch
- 3. Prefix of long chain
- 4. an-
- 5. Location of OH (if multiple di, tri, tetra)
- 6. -ol

Hydrogen bonding, so higher BP and soluble

Amines

- 1. Identify the longest C chain
- 2. Identify any branches
- 3. Number the C atoms in longest chain so number Carbon 1 attached to amino group (NH_2)
- 4. Location /Name of branch
- 5. Amino-
- 6. Prefix of long chain
- 7. -ane

Carboxylic acids

- 1. Longest –C chain with -COOH
- 2. Identify branches
- 3. No. 1 C is the C in -COOH
- 4. Location of branches
- 5. Name branch
- 6. Prefix
- 7. -anoic acid

Turn blue litmus red. Act as weak acids

Ketones

Suffix is "-one"., and indicating which carbon the =O is attached

Aldehydes

Aldehydes are named by changing "-e" at the end of the alkane to "-al".

Acid Chlorides

suffix is "-oyl chloride" prefix is alkyl group including the carbon on the -COCl group

Amides

- 1. The carbon attached to the CONH₂ will be carbon 1
- 2. Number and name any branches
- 3. Name the longest C chain
- 4. Suffix anamide

Esters

- 1. Split between C-O bond
- 2. Identify name for side with –O-
- 3. Prefix of C chain
- 4. -yl
- 5. Identify name for side with C=O
- 6. Prefix of C chain
- 7. –anoate

Amino acids

Do not need to name

2. Isomers:

cis/trans

and

optical isomers (enantiomers)

3. Addition reactions of alkenes:

4. Elimination reactions - Saytzeff's rule (poor get poorer) major (-2-) /minor (-1-)

5. Substitution reactions:

8. Distinguishing tests/redox equations: aldehyde positive for Tollens/Benedicts/permanganate

Testing Reagent	observations	
	Aldehyde OR—C—H	Ketone O R'
Potassium permanganate MnO ₄ ⁻ to Mn ²⁺	Oxidises into carboxylic acid Purple to colourless	No reaction
Tollens' reagent $[Ag(NH_3)_2]^+$ to Ag	Oxidise aldehydes (but not alcohols) Silver 'mirror' forms	No reaction
Benedict's solution Cu ²⁺ ions to Cu ⁺	Oxidises aldehydes (but not alcohols) to form Cu+ ions Red/brown ppt forms	No reaction

9. Acid/base reactions with Amines + Carboxylic acids

13. Hydrolysis reactions of esters:

14. Hydrolysis reactions of amides:

15. Condensation polymerization:

dicarboxylic + diol → polyester + water

dicarboxylic + diamides → polyamide + water

16. Amino acids: forming dipeptides

