

Bonding, Structure and Energy AS 91164 Lewis Structure (A usually – 2/3 correct to get grade) Year Molecules Question type tip □ Usually need 2/3 correct for Achieved. none angle Don't spend more than a few minutes O2 OCI2 CH2O Lewis only Leave a difficult diagram H₂O CS₂ PH₃ 2016 + angle Use information in the table to answer the E shape HOCI COCI2 NF3 + angle + shape name question 2018 H₂S NH₃ BF₃ + angle + shape name □ Come back and fill in table if you have time (after CH₄ NCl₃ OF₂ + shape name Discuss each Shapes (E1 – Must do question) molecule uick separately using Molecules Year the same steps Start with number of regions around central atom (2 or 3 or 4) Name central atom! From parts of a molecule add the VSEPR theory (REPLUSION) CCl₄ COCl₂ H₂O CS₂ PH₃ link arrangement shape to number of regions - and bond angle!! HOCI COCI2 name bonding and non-bonding pairs NH₃ BF₃ name final shape (will be same if no non-bonding pairs)_ CH₄ NCl₃ OF₂ Polarity (E2 – Must do guestion) quick Year Molecules Start with the individual bonds in the molecule, name them! 2013 Molecule MX₂ MUST talk about electronegativity difference and link to even or uneven 2014 SO₂ and CO₂ sharing of electrons to form (or not) dipoles BeCI BF3 Move onto whole molecule - symmetrical or not - link to shape! NH₃ BH₃ Symmetrical shapes – linear, trigonal planar, tetrahedral CH₂Cl₂ CCl Non-symmetrical shapes – bent, trigonal pyramid HCN CO₂ Finally state the polarity CHCl₃ NH₃ 2019 State polarity of molecule first State polarity of bonds (name atoms) Link symmetry to shape to dipoles cancelling out (or vice versa) Solubility (E3 – Must do question) δ+ Year Molecules NaCl $ZnCl_2$ – in solids Questions NaCl 2017 2018 Any ionic solids as example I₂ in H₂O and cyclohexane 2019 Not every year □ Will usually require a diagram if ionic solid Only a few ions of each are needed in the diagram. Discuss strong water-water bonds (won't break unless polar/ionic solid) Don't forget to label Discuss ion-water bonds forming Use polar/non-polar term ONLY if molecular solid

Solids (E4 - Usually 2 x E

MUST remember particles and

bonding for each /					
Substance (for example)	Type of substance	olid Type of particle	Attractive forces between particles		
C _(s) Graphite	Covalent (extended) network (2-D)	Atom	Strong Covalent		
Cl _{2 (s)} chlorine	Molecular	Molecules	Weak intermolecular forces		
CuCl _{2(s)} copper chloride	lonic	lon	lonic bonds / electrostatic attraction		
Cu _(s) copper	Metal	Atom / cations and electrons	Metallic bonds / electrostatic attraction		
		There will not nee information from	cessarily be one example for each group but this chart MUST be used in following questions		

about solids

Use the terms in the chart above in your long answer. You must discuss structure AND then link to property

quick tip

Veer	Culeaterease in alcost		Caludailita	Du stilitu (se alla a bilitu (Brittla	Chata () (D
rear	Substances in chart	Conductivity	Solubility	Ductility/maileability/Brittle	State/ MP
2013	Cu/C(graphite)/CuCl/Cl ₂	Cu/C(graphite)		Cu/C(graphite)	Cl ₂ CuCl
2014	Mg / I2	Q1. C (Graphene) Q2.	Mg / I ₂	Mg / I2	C (graphene)
		Mg / I ₂			
2015	Cu / PCl ₃ / SiO ₂	PCI ₃	Cu/SiO ₂ /KCl	Cu/SiO ₂ /KCl	PCI₃
	/ KCl		Pick any 2	Pick any 2	
2016	ZnCl ₂ /C(graphite)/CO ₂	ZnCl ₂ / C(graphite)	ZnCl ₂ / CO ₂		
2017	Al/MgCl ₂ /S ₈			AI/MgCl ₂ /S ₈	Al/MgCl ₂ /S ₈
2018	A/B/C/D given properties	ionic – identified from			Molecular/metallic
		chart			From chart
2019	Na/Nal/I ₂	C(Graphite) /CO ₂		Na/Nal	

Substances KEY words for structure				
Molecular	Ionic	Metallic	Covalent Network	
X is a molecular substance composed of X molecules together by weak intermolecular forces.	stanceX is an ionic substance. It is composed of a lattice of positive X ions and Xes.chloride ions held together by strong electrostatic attraction between these positive and negative ions. This bonding is directional.	X is a metallic substance composed of X atoms packed together. Valence electrons are loosely held and are attracted to the nuclei of the neighbouring X atoms, which results in metallic bonding, that is non-directional.	Graphite is a covalent network solid composed of 2- D layers of C atoms covalently bonded to three other C atoms. The remaining valence electrons are delocalised (ie free to move) between layers	
			Diamond / SiO ₂ is a covalent network made up of atoms covalently bonded together in a 3D lattice structure.	

Year	Endo or EXO	Grade	Longer answer	Grade
2013	Ammonium nitrate +kJ	М		
	Glucose combustion			
2014	NaOH temp increase	А		
	Water to ice			
2015	Hand warmers heat	А	Labelled energy diagram (exo) + breaking and	E
	Glucose photosynthesis		making bonds	
2016	Cod packs	А	Labelled energy diagram (exo) + link	
	Copper sulfate -kJ		evapouration to endo	
2017	CaCl ₂ temp increase	М	Labelled energy diagram (exo) + link	E
			evapouration to endo	
2018	Ammonium chloride dissolving	Α	Evapouration link to endo	M x 2
	respiration		Link diagram to exo	
2019			Melting ice	E

Thermochemical Calculations (E6)

Year	А	В	С	Grade
2013	yes	yes	Yes – 2 equations	E x 2
2014			Yes – 2 equations	E
2015			Yes – 2 separate equations Reasons experimental data different from actual	E x 3
2016			Yes- 2 equations	E
2017			Yes- 2 equations	E
2018	yes		Yes – 1 equation	E x 2
2019	yes		Yes – 2 separate equations	E x 2

Question	Given	Asked for	Calculate By: Don't forget units!
Туре	Thermochem equ.		
А	+ actual enthalpy	Number of	1. enthalpy per ONE mol substance = enthalpy (kJ) from equation / substance co-efficient in
	released/absorbed	moles for	eq.
		given	2. n = kJ given / kJ per 1 mol.
		enthalpy	
		amount	
В	+ mass	Enthalpy	1. n=mass/molar mass
	+ molar mass	change per 1	2. enthalpy per ONE mol substance = enthalpy (kJ) from equation / substance co-efficient in
	+ actual enthalpy	mol	eq.
	released/absorbed		3. ΔH = enthalpy given / enthalpy per one mol
С	2 equations	Heat energy	1. n =m/M (for each)
	+mass of both	of both	2. enthalpy per ONE mol substance = enthalpy (kJ) from equation / substance co-efficient in
	+ molar mass of	Comparison	eq. (for both)
	both	sentence	enthalpy = n x enthalpy per ONE mol substance (for both)
			4. comparison sentence

Bond Enthalpy calculations (E7)

Year	equation	calculate	Grade
2013	$CH_{4(g)} + Cl_{2(g)} \to CH_3Cl_{(g)} + HCl_{(g)}$	∆r H°	E
2014	$H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(g)} \Delta_r H^o = -242 \text{ kJ mol}^{-1}$	bond enthalpy of the O – H bond in H_2O	E
2015	$\begin{array}{ccc} H & H & H & H \\ C = C & (g) + Br - Br (g) \rightarrow H - C - C - H (g) \\ H & H & Br & Br \end{array}$	∆r H°	E
2016	$\begin{array}{ccccc} H & H & H & H & H & H & H & H & H \\ & & & &$	$\Delta_r H^{\circ}$	E
2017	$ \begin{array}{l} \text{Reaction 1: } N_2H_{4(g)} + O_{2(g)} \rightarrow N_{2(g)} + 2H_2O_{(g)} \\ \text{Reaction 2: } N_2H_{4(g)} + 2F_{2(g)} \rightarrow N_{2(g)} + 4HF_{(g)} \end{array} $	Δ _r H° Of both	E
2018	$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)} \Delta_r H^o = -92.0 \text{ kJ mol}^{-1}$	bond enthalpy of the N–H bond	E
2019	$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 4H_2O_{(g)} + 3CO_{2(g)} \Delta_t H = -2056 \text{ kJ mol}^{-1}$	bond enthalpy of the C = O bond	E

bonds broken (reactants) minus bonds formed (product) = total enthalpy

quick tip

- □ If calculating bond enthalpy for ONE bond label as x,
- **u** calculate $\Delta_r H^\circ = \sum$ (energy of bonds broken) \sum (energy of bonds formed) and add x to correct side
- rearrange to isolate x
- Don't forget that x is a single bond! divide if more than 1 bond present
- □ Enthalpy should be -ve if energy released and +ve if energy absorbed
- □ Make sure you add units kJ mol⁻¹
- $\hfill\square$ Double check correct number of bonds i.e. H_2O has 2 x O-H bonds
- Do calculations twice simple errors can be made here

Good luck - you have this!