Summary NCEA Chemistry 3.4

Focus on Excellence

GZ Science Resources

quick

VIII

He O Ne

Ar

Kr

۷

N

Ρ

As

Sb

Bi

٧I

0

S

Po

VII

F

C

Br

I٧

С

Si

Ge

Particles, Substances and Thermochemistry AS 91390

SPD Configuration (A sometimes M)

Year	Atoms/ions	Grade	
2013	Se V V ³⁺	А	
2014	K Cr As	М	
2015	Al Cu ²⁺ Se	А	
2016	Cl Zn Cr ³⁺	А	
2017	CI Ca ²⁺ Mn ²⁺	А	
2018	V Cu⁺ Br⁻	A	
2019	Cr Fe ³⁺ Ge	A	

- □ Usually need 2/3 correct for Achieved.
- □ Focus on atoms then ions
- □ Count back electrons to match atomic number
- Don't spend more than a few minutes
- Leave a difficult ion configuration

Π

III

В

AL

Ga

Periodic trends (E1 – can often be 2E or M + E)

- Always include both NUCLEAR CHARGE (across) and ENERGY LEVELS (down) as part of your discussion
- □ Also include attraction (+/-) /repulsion (-/-) to explain NET attractive force
- □ Make sure you can write an ionisation equation (with states!)
- Use the equation to remember your definitions

Periodic trends Summary

	Electronegativity	1 st ionisation energy	Atomic radii
Across a Period	The greater the nuclear charge, the easier it is to obtain more electrons from other atoms > more p+ to pull with INCREASES	As the nuclear charge is larger it requires more energy to remove an electron as they are stronger attracted (and closer) to the nucleus INCREASES	Across a period, the energy level numbers stay the same, but proton numbers increase attraction of the valence electrons DECREASES
Down a group	The larger the number of energy levels the less net electrostatic attraction so the less ability an atom has to remove the valance electrons of another atom (and further away) DECREASES	As the energy level numbers increase the easier it is to remove electrons as the valence electrons are further from the 'pull' of the protons and more electron repulsion by other electrons in inner energy levels DECREASES	Down a group the energy levels become further away from the nucleus therefore the valence electrons repel more, less attraction to nucleus, taking up more space and increasing the size INCREASES

Year	Atomic Ra	dii	Electronegativity	1 st Ionisatio	n Energy
	atoms	atom/ion		atoms	equation
2013 E x 2		CI/CI-	O Se	Li Cl	
2014 E		K/K+		arrange	
2015 E x 2			definition	Definition	
				Trend across 3 rd	
				Period	
2016 M + E		CI/CI-	Trend down	Trend down	
2017 M			Definition	Definition	Ca
+ E x 2			CI/P	Trend down Grp	
				2.	
2018 E	Trend across 2 nd period			Trend across 2 nd	
				period	
2019 M + E		S/S ²⁻	O Na S		

Lewis Diagrams (tends to be M Question)

Year	Atoms/ions	Grade	
2013	BrF₃/PCI [−]	A	
2014	SiF6 ²⁻	М	
2015	AsF5/SeF6	A x 2	
2016	ICI4 ⁻ /CIF ₃	M	
2017	l ₃ ⁻ + explain shape	м	
2018	AsF ₅ /BrF ₅	М	\backslash
2019	SF ₄ /SF ₃ ⁻	М	

- □ In table usually 2 to draw and name shape
- □ Only one name + diagram required for the mark.
- It is highly likely the Lewis structure will be an expanded Octet (more than 4 pairs around the central atom) so "L3" names can be used for shapes.
- □ YX₆ indicates octahedral
- Don't forget charge and [] for ions!

quick tip

Molecular Shapes and Polarity (E2)

Key phrases to use:

- □ The electron clouds repel as far apart as possible; this produces the x shape VSEPR
- □ repulsions between x bonding regions and x non-bonding region of charge **REPLUSIONS**
- General difference in electronegativity between X and Y, so the X-Y bonds are polar covalent ELECTRONEGATIVITY
- □ Shape x which is asymmetric therefore the polarities/dipoles do not cancel SYMMETRY

Year	Atoms/ions	Grade			Link shape to symmetry
2013	SF4 and XeF4	E			Shapes with non-bonding pairs (except linear and square planar
2014	Polarity of Bonds	E		_	are unsymmetrical
2015	XeO ₂ F ₂ and GeH ₄	E			In recent years only one shape is used
2016	SeF ₆ linked to solubility	E			Bond angles not needed (except at Schol level)
2017	IF ₅	E		-	bond angles not needed (except at schol level)
2018	XeF ₄	E	\neg		
2019	CIF ₅	E			tip

Weak-Intermolecular Forces (E3)

			. 1
Year	compounds	Grade	
2013	N2H4 (HB) CH3F (P) C10H22 (NP)	E	
2014	NH _{3(HB)} F _{2(NP)} HCl _(P)	A +E	
2015	$C_5H_{12}O$ isomers branched straight	A +E	
2016	NaCI HCI (P) CH ₃ CI(P)	A +E	
2017	$N_2H_4 ~_{(HB)} ~CH_3I_{(P)} ~C_{10}H_{22(NP)}$	E + M x 2	
	and solubility comparison		Ν
	and comparison of states		$\langle \rangle$
2018	$CH_{3}OH_{(HB)}\ CH_{3}CH_{2}CH_{2}OH\ _{(HB)}$	A + E	
	CH ₃ CH ₂ COH (P)		
2019	NH3 (HB) C2H6(NP) CH3NH2(HB)	A +E	

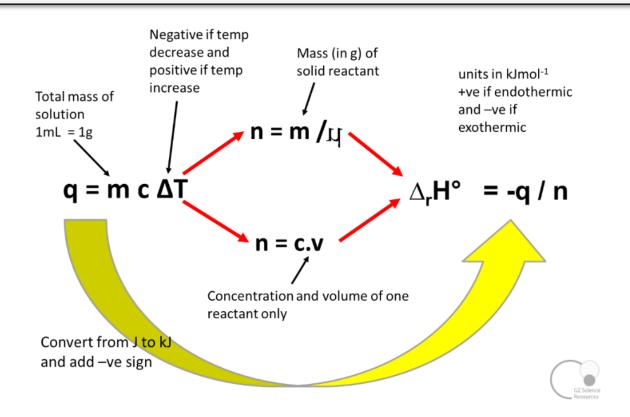
- Always check if question has reference to Molar mass as this will be then required in answer
- If molar mass and bonding type is the same, then check for branched and straight chain molecules
- $\hfill\square$ Data table will be given with melting/boiling point OR $\Delta_{vap}H^{\circ}$
- □ Sometimes a table is required first, but use ALL information in question use as a guide
- □ Watch for ionic solids no intermolecular bonding!
- □ There is not always 1 of each type
- Use information and terms from filled in chart in long answer

Non-Polar	Polar	Polar (H-O, H-N, H-F)
Temporary (Instantaneous) dipole	Permanent dipole +Instantaneous dipole	Hydrogen Bonding + Instantaneous dipole
ID - ID	PD – PD + ID - ID	HB – HB + ID - ID
The () molecular solid is non-polar and so	The () molecular solid is polar and contains	The () molecular solid has the highest boiling
the only intermolecular forces would be	both Permanent dipole and instantaneous	point of the three. This is because it has hydrogen
due to temporary dipole interactions.	dipole interactions.	bonds, which are very strong intermolecular forces.
This type of intermolecular bonding is the	The permanent dipole is generally the stronger	The electronegativity difference between the H
weakest of the three so these molecular	force and will be the dominant force found in	Bond creates a very polar molecule, which takes
solids will have the lowest boiling point.	the molecular solid and therefore these	large amounts of energy to break the
Generally, as the molar mass increases,	substances tend to have a higher boiling point	intermolecular bond between molecules hence a
there are more electrons and more	than the non-polar substances.	high boiling point.
instantaneous dipole-dipole interactions so	The instantaneous dipole forces will become	These molecular substances also contain
all things being equal, the boiling points	more significant if the molar mass of the	instantaneous dipoles, which only become
would increase.	molecule becomes greater.	significant when the molar mass is large.

Enthalpy (E4 – sometimes E but mostly M)

Year	Туре	Grade			
2013	1. Definition $\Delta_{vap}H$	A + M		_	
	2. What occurs at BP				Make sure you know
2014	1. Graph – what occurs at each point	E			all the definitions
2015	1. Write the equation for $\Delta_c H^\circ$	E + A x 2			Label a S/L/G graph
	2. explain why $\Delta_c H^{\circ}$ (H ₂) and $\Delta_f H^{\circ}$ (H ₂ O) have the				with MP and BP and
	same value				notes at each point
	3. compare $\Delta_{f}H^{\circ}$ (H ₂ O _(g)) for liquid and gas				Combustion and
2016	1. Define $\Delta_{fus}H^{\circ}$	M			Formation equations
	2. Why is $\Delta_{vap}H^{\circ}(NaCl)$ greater than $\Delta_{fus}H^{\circ}(NaCl)$?		、 、		will be used in Hess's
2017	1. equation for the sublimation	A	\mathbf{N}		law as well – so
	2. Define the enthalpy of sublimation		\backslash		make sure you ca
2018	1. equation for $\Delta_{fus}H^{\circ}$	M x 2			do these!
	2. compare $\Delta_c H^\circ$ for liquid and gas				quick
2019	1. identify vapourisation as endo or exo	М		-	tip

<mark>Entropy (E5</mark>)


Year	Туре	Grade]
2013	Spontaneous $\Delta H < 0$ $\Delta S < 0$	E	
2014	Spontaneous $\Delta H > 0$ $\Delta S > 0$	M + E	S
	System/surrounds increase/decrease		
2015	Spontaneous $\Delta H > 0$ $\Delta S > 0$	M + E	S
	System/surrounds increase/decrease		У
2016	System/surrounds increase/decrease	E + M	
	Spontaneous $\Delta H > 0$ $\Delta S > 0$		e
2017	System/surrounds increase/decrease	E + M	ii
	Spontaneous $\Delta H > 0$ $\Delta S > 0$		
2018	Spontaneous $\Delta H > 0$ $\Delta S > 0$ AND	E	C C
	system/surrounds		
2019	Spontaneous $\Delta H < 0$ $\Delta S < 0$ AND	E	
	system/surrounds		

- Questions have combined spontaneous and system/surrounds for past 2 years
 Make sure you identify How
- enthalpy and entropy have increased or decreased
- Drawing a simple diagram can help as well

Specific Heat Capacity (E6)

Year	Mass (given g)	Concentration (given v)	Conditions	Grade
2013		HCI + NH ₃ solution	yes	E
2014				
2015				
2016	Methanol combusted		yes	E + M
2017				
2018	NH4CI			E
2019	C ₆ H ₁₄ combusted		Yes	E + M

- □ Not given every year, but a quick calculation to do if it is
- D Make sure you convert from j to kJ
- Also remember to change sign (as a temperature increase is -ve enthalpy value)

Enthalpy of Formation (E7 -sometime E Usually M)

Year	Туре	Grade		Check for $\Delta_c H^\circ = \Delta_f H^\circ$
2013	$C_{10}H_{22(\ell)} + 15.5O_{2(g)} \rightarrow 10CO_{2(g)} + 11H_2O_{(\ell)}$	М		All elements $\Delta_{\rm f}$ H°=0
2014	$NH_{3(g)} + HCl_{(g)} \rightarrow NH_4Cl_{(s)}$	М		Do calculation twice as easy
2015	$C_5H_{12}O_{(l)} + 7\frac{1}{2} O_{2(g)} \rightarrow 5CO_{2(g)} + 6H_2O_{(l)}$	М		to make mistake
2016	$CH_3OH_{(1)} + 3/2 O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(1)}$	Ē		3 s.g.f.
2017	$C_{10}H_{22}(I) + 15 \frac{1}{2} O_2(g) \rightarrow 10CO_2(g) + 11H_2O(I)$	E		Don't forget units kJ mol ⁻¹
2018	$C_3H_7OH_{(l)} + 4.5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(l)}$	м		don't forget sign – or +
2019	$CH_{4(g)} + NH_{3(g)} \rightarrow HCN_{(g)} + 3H_{2(g)}$	М	<u> </u>	

$\Delta_r H^o = \sum n \Delta_f H^o_{products} - \sum n \Delta_f H^o_{reactants}$

Hess's Law (E8)

Year	Туре	Grade
2013	Calculate $\Delta_f H - (H_2O_{(\ell)})$,	М
2014	Calculate the standard enthalpy of formation of liquid ethanol	E
2015	Calculate the $\Delta_{\rm f} H^{\circ}$ for B ₂ H _{6(g)} ,	E
2016		
2017		
2018	enthalpy change, $\Delta_r H^\circ = 2AI_{(s)} + 3CI_{2(g)} \rightarrow AI_2CI_{6(s)}$	E
2019	Calculate the standard enthalpy of formation for liquid hexane, $\Delta_f H^{\circ}(C_6 H_{14(1)})$,	E

Check the question first to make sure you can't use enthalpy of formation method (which is quicker)

- □ Self-checking as your final equation must match starting equation
- □ Add up enthalpies twice! This is where mistakes can be made, and quickly fixed
- $\hfill\square$ Make sure you can expand out equations -both $\Delta_f\,H$ and $\Delta_c\,H$
- □ Again, 3 s.g.f. for answers and units (kJ mol⁻¹) and -ve or +ve sign
- □ Underline final answer to make it obvious

Good luck – You can do it!

Summary of grade boundaries

Year	Question									Grade Bo	undaries for each question
		NO		N2	A3		M5	M6	E7	E8	To get overall E 19+
2013	1	/	1a	2a	3a	4a	2m	3m	2e	2e	19+
									Minor error	Trends	
	2	/	1a	2a	3a	4a	2m	3m	1e +1M	Shape/polarity 2e	
	2	/	14	Zd	34	48	zm	am	16 +1M	Lee Hess's	
										Specific heat	
	3	/	1a	Za	3a	4a	2m	3m	2e minor error	2e	
		l '								Intermolecular	
										entropy	
2014	1	/	1a	2a	3a	4a	3m	4m	2e minor error	2e	19+
										Trends x 2	
	2	/	partial	1a	3a	4a	2m	3m	1e minor error	2e	
										Intermolecular	
	3	/	1a	2a	3a	4a	3m	4m	1e with minor error	enthalpy 2e	
	5	<i>'</i>	10	20	54	-10	511	-4111	Te with hinds end	Entropy	
										Hesss's	
2015	1	/	1a	2a	3a	4a	2m	3m	1e +1m	2e	19+
										Trends x 2	
	2	/	1a	2a	3a	4a	1m + 3a	2m	1e + 1m	2e	
										Enthalpy	
	2		4	2.	2.	4	2	2	2.	Hess's	
	3	/	1a	2a	3a	4a	2m	3m	2e	2e +1m	
										Shape/polarity intermolecular	
2016	1	/	1a	Za	3a	4a	3m	4m	1e	2e	20+
	-	l '								Trends	
										Shape/polarity	
	2	/	1a	2a	3a	4a	2m	3m	1e	2e	
										Intermolecular	
										entropy	
	3	/	1ə	Za	3a	4a	2m	3m	2e	3e	
										Hess's	
										Specific heat entropy	
2017	1	/	1a	2a	3a	4a	2m	3m	2e minor error	2e	19+
		<i>'</i>	10	2.0	54	40	2	5111	Le minor error	Trends	
										X 2	
	2	/	1a	Za	3a	4a	4m	5m	2e	Зe	
										Intermolecular x 2	
										Hess's	
	2		4.	2-	2.	4-	2	4	2	entropy	
	3	/	1a	2a	3a	4a	3m	4m	2e minor error	2e Entropy	
										Entropy Shape/polarity	
2018	1	/	1a	2a	3a	4a	2m	3m	1e	2e minor error	20+
	-	· ·								Trends	
										Shape/polarity	
	2	/	1a	2a	3a	4a	3m	4m	2e minor error	2e	
										Intermolecular	
				-						Hess's	
	3	/	1a	2a	3a	4a	2m	3m	1e	2e minor error	
										Specific heat	
2019	1	/	1a	2a	3a	5a	3m	4m	1e + 2M	entropy 2e	20+
2015	1		10	20	34	54	511		10 + 2141	Trends	201
										Shape/polarity	
	2	/	1a	Za	3a	5a	3m	4m	1e +2m	Ze	
										Hess's	
										Heat capacity	
	3	/	1a	2a	3a	5a	3m	4m	1e +2m	2e Intermolecular	
										entropy	
										ennopy	