

Titration of CH₃COOH(aq) [V = 40.0 mL, C = 0.200 mol/L] with NaOH(aq) [C = 0.200 mol/L] using phenolphthalein indicator.

Chemistry AS 91392 Titration Calculations

Steps to dion curve

Question:

20.0 mL of 0.0896 mol L⁻¹ ethanoic acid is titrated with 0.100 mol L⁻¹ sodium hydroxide up to a total of 30mL pKa (CH₃COOH) = 4.76

In order to graph a titration curve there are a number of points that need to be calculated in their specific order

- 1. The pH before any base is added
- 2. The volume of the base at equivalence point
- 3. The volume of base when pH = pKa
- 4. The pH at equivalence point
- 5. The pH after all of the base 30mL has been added

step one:

Find the pH of:

$$pK_a = 4.76$$

$$CH_3COOH_{(aq)} + H_2O_{(I)} \Leftrightarrow CH_3COO_{(aq)} + H_3O_{(aq)}^+$$

$$K_a = \frac{[CH_3COO^-] [H_3O^+]}{[CH_3COOH]} = 10^{-pKa}$$

$$= 1.74 \times 10^{-5}$$

$$[H_3O^+]$$

2.
$$[CH_3COOH] =$$

ster one:

Equilibrium $K_a =$ expression of acid dissociation in water

[CH₃COO-] [H₃O+]

[CH₃COOH]

 $[H_3O^+]^2$

1.74 x 10⁻⁵

0.0896 mol L⁻¹

Rearrange:

$$1.74 \times 10^{-5} \times 0.0896 \text{ mol L}^{-1} = [H_3O^+]$$

1.25 x 10⁻³ molL⁻¹

$$= [H_3O^+]$$

 $= -\log (1.25 \times 10^{-3} \,\mathrm{mol}\,L^{-1})$

Could also use 10^{-Pka} in formula

$$pH = 2.90$$

Calculate the volume of pH = pKa

NaOH when

NaOH The volume of at equivalence point is 17.9mL

$$17.9mL/2 = 8.96mL$$
 (x)

pKa = 4.76 (y)

These points intercept on the graph

The pH = pKa when 8.96 mL

of

NaOH

has been added

The buffer zone will be 1 pH point above and below pH

4.76

Once the curve is drawn this can be sketched as a circle around on the line. the area from 3.76 – 5.76

ster collinger of the state of

Calculate the pH at equivalence point. At the Equivalence point we will have:

We need to calculate the pH of a solution of CH₃COONa with this concentration: 0.0472 molL-1

Use same mol of conjugate base as base calculated from step 2. as they are produced 1 mol = 1 mol

Step dinder

$$CH_3COO_{(aq)} + H_2O_{(I)} \Leftrightarrow CH_3COOH_{(aq)} + OH_{(aq)}$$

$$K_b = \frac{1 \times 10^{-14}}{K_a}$$

$$K_{b} = \frac{1 \times 10^{-14}}{1.74 \times 10^{-5}}$$

$$K_b = 5.75 \times 10^{-10}$$

$$K_b = \frac{[CH_3COOH][OH^-]}{[CH_3COO-]}$$

$$[CH3COOH] = [OH-]$$

Concentration calculated from previous step c=n/v

ste Polity de no

$$K_b = \frac{[OH^-]^2}{c(conj base)}$$

5.75 x 10⁻¹⁰

$$[OH^{-}]^{2}$$

0.0472 molL⁻¹

$$= [OH^-]$$

$$[H_3O^+] = K_w/[OH^-]$$

$$[H_3O^+] = 1 \times 10^{-14} / 5.21 \times 10^{-6} \text{ molL}^{-1}$$

$$[H_3O^+] = 1.92 \times 10^{-9} \,\text{molL}^{-1}$$

$$pH = -log (1.92 \times 10^{-9} \, mol L^{-1})$$

$$pH = 8.72$$

Step Circle

Calculate the pH after 30mL of NaOH has been added.

Since the equivalence point is at 17.9mL of NaOH , this results in an excess of 12.1mL of NaOH

Although the CH₃COONa formed hydrolyses slightly in water, the [OH-] from this reaction is very small compared to the [OH] from the NaOH so we assume all [OH-] comes from NaOH

X

Total volume of solution = $\frac{12.1 \text{mL}}{\text{C(NaOH)}} = \frac{50 \text{ mL}}{}$

20mL + 30mL = 50mL

0.100molL⁻¹ concentration

calculation

= 0.0242 molL⁻¹

New concentration after dilution

This is a dilution

(30mL - 17.9mL = 12.1mL)

Step tive:

NaOH is a strong base

Assume
$$[OH^{-}] = c(NaOH)$$

$$[OH^{-}] = 0.0242 \text{ molL}^{-1}$$

$$[H_3O^+] = K_w / 0.0242 \text{ mol}L^{-1}$$

$$[H_3O^+]$$
 = 1 x 10⁻¹⁴ / 0.0242 molL⁻¹

$$[H_3O^+]$$
 = 4.13 x 10⁻¹³ molL⁻¹

$$pH = -log(4.13 \times 10^{-13} \text{ molL}^{-1})$$

$$pH = 12.4$$

Curve

Now we have the key data points:

- ☐ The pH before any Base added = 2.90
- ☐ The volume of NaOH at equivalence point: 17.9 mL
- ☐ The volume of NaOH when pH = pKa: 8.96 mL
- ☐ The pH at equivalence point: 8.72
- ☐ The pH after 30mL of NaOH is added: 12.4

Drowing Cur

volume pH

0.00 mL, 2.90

8.96 mL, 4.76

17.9 mL, 8.72

30.0 mL, 12.4

Plot these points on a graph

http://www.iq.usp.br/gutz/Curtipot .html#Download